Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=5+5^2+5^3+...+5^{2008}\)
a) Ta có: \(126=5^0+5^3\)
\(5+5^4=5\left(5^0+5^3\right)\text{ }⋮\text{ }126,\text{ }5^2+5^5=5^2\left(5^0+5^3\right)\text{ }⋮\text{ }126,...\)
Áp dụng lần lượt như thế, ta có:
\(\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)+\left(5^8+5^{11}\right)+\left(5^9+5^{12}\right)+...+\left(5^{2005}+5^{2008}\right)\text{ }⋮\text{ }126\)
Còn thiếu \(5^{2006}+5^{2007}\), ta có: \(5^{2006}+5^{2007}=5^{2006}\left(5^0+5^1\right)=5^{2006}\cdot6=2\cdot3\cdot5^{2006}\)
Trong khi đó: \(126=2\cdot3^2\cdot7\)
Ta dễ thấy \(5^{2006}+5^{2007}\) không chia hết cho \(3\cdot7=21\), nên \(5^{2006}+5^{2007}\) không chia hết cho 126.
Từ đó suy ra S không chia hết cho 126.
b) Tất cả các số hạng đều có chữ số tận cùng là 5.
Biểu thức S có \(\left(2008-1\right)+1=2008\) số hạng cộng lại với nhau.
=> S có chữ số tận cùng là 0 (vì số lượng các số hạng cộng lại với nhau là số chẵn)
Cho S = 2^1 + 2^2 + 2^3 + ... + 2^60. Tìm chữ số tận cùng của S và chứng minh rằng S chia hết cho 14
S = 2¹ + 2² + 2³ + ... + 2⁶⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁵⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + 2⁵⁶.30
= 30.(1 + 2⁴ + ... + 2⁵⁶)
= 10.3.(1 + 2⁴ + ... + 2⁵⁶) ⋮ 10
Vậy chữ số tận cùng của S là 0
*) S = 2¹ + 2² + 2³ + ... + 2⁶⁰
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 14 + 2³.(2 + 2² + 2³) + ... + 2⁵⁷.(2 + 2² + 2³)
= 14 + 2³.14 + ... + 2⁵⁷.14
= 14.(1 + 2³ + ... + 2⁵⁷) ⋮ 14
Vậy S ⋮ 14
Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$
$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$
$=(1+2)(2+2^3+...+2^{23})$
$=3(2+2^3+...+2^{23})\vdots 3$
b.
$S=2+2^2+2^3+...+2^{23}+2^{24}$
$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$
$\Rightarrow 2S-S=2^{25}-2$
$\Rightarrow S=2^{25}-2$
Ta có:
$2^{10}=1024=10k+4$
$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$
$\Rightarrow S$ tận cùng là $0$