K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

S=7+7^2+..+7^2017

7S=7^2+..+7^2018

(7s-s)=6s

=7^2018-7

\(S=\frac{7^{2018}-7}{6}\)

Tìm số tận cùng của 72018

\(7^{2018}=7^{2.1009}=49^{1009}=49.49^{1008}=49.\left(...1\right)^{504}\Rightarrow tancung=9\)=> 72018-7 có tận cùng =2

=> S có tận cùng là :(12/6= 2) hoạc (42/6=7)

S có 2017 số hạng => S là một số lẻ 

=> S có tạn cùng =7

21 tháng 12 2016

làm chi tiết nhé!!!!!!!!! Cảm ơn nhìu............♥♥♥♥

11 tháng 10 2020

moi người gửi bài như thế nào vậy chỉ mình với

11 tháng 10 2020

a) \(S=7^{2013}-7^{2012}+7^{2011}-7^{2010}+...-7^2+7-1\)

\(S=\left(7^{2013}-7^{2012}\right)+\left(7^{2011}-7^{2010}\right)+...+\left(7-1\right)\)

\(S=7^{2012}\cdot6+7^{2010}\cdot6+...+6\)

\(S=6\cdot\left(7^{2012}+7^{2010}+...+1\right)\) chia hết cho 6

=> đpcm

b) \(S=7^{2013}-7^{2012}+...+7-1\)

\(\Leftrightarrow7S=7^{2014}-7^{2013}+...+7^2-7\)

\(\Leftrightarrow7S+S=\left(7^{2014}-...-7\right)+\left(7^{2013}-...-1\right)\)

\(\Leftrightarrow8S=7^{2014}-1\)

\(\Leftrightarrow S=\frac{7^{2014}-1}{8}\)

Vì S chia hết cho 6 => S nguyên => \(7^{2014}-1\) chia hết cho 8 và 6

Xét: \(S=\frac{7^{2014}-1}{8}=\frac{\left(7^4\right)^k\cdot7^2-1}{8}=\frac{\overline{.....1}\cdot49-1}{8}=\frac{\overline{.....8}}{8}\)

Đến đây ta có 2 khả năng S có cstc là 1 hoặc 6, mà nếu S có cstc là 1 thì lẻ không chia hết cho 6

=> S có cstc là 8

30 tháng 1 2017

S = 72013 - 72012 + 72011 - 72010 + .... + 7 - 1

=> 7S = 7( 72013 - 72012 + 72011 - 72010 + .... + 7 - 1 )

= 72014 - 72013 + 72012 - 72010 + ... + 72 - 7

=> S + 7S = (72013 - 72012 + 72011 - 72010 + .... + 7 - 1) + ( 72014 - 72013 + 72012 - 72010 + ... + 72 - 7 )

8S = - 1 + 72014 = 72014 - 1

=> \(S=\frac{7^{2014}-1}{8}\)

Ta có : 72014 = ( 72 )1007 = 491007 = ......9

=> 72014 - 1 = .....9 - 1 = .......8

\(\Rightarrow S=\frac{......8}{8}=......1\)

Vậy cs tận cùng của S là 1

30 tháng 1 2017

mình ko thích dạng bài này 

3 tháng 4 2018

Ta có : 

\(S=7^{2019}-7^{2018}+7^{2017}-...-1\)

\(7S=7^{2020}-7^{2019}+7^{2018}-...-7\)

\(7S+S=\left(7^{2020}-7^{2019}+7^{2018}-...-7\right)+\left(7^{2019}-7^{2018}+7^{2017}-...-1\right)\)

\(8S=7^{2020}-1\)

\(S=\frac{7^{2020}-1}{8}\)

Vậy \(S=\frac{7^{2020}-1}{8}\)

Chúc bạn học tốt ~ 

4 tháng 4 2018

cảm ơn nhìu!!!!!!