Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) m2+1\(\ge\)1 \(\forall\)m, suy ra phương trình đã cho là phương trình bậc nhất một ẩn với mọi m.
b) Nghiệm của phương trình đã cho là x=\(\dfrac{2m}{m^2+1}\) (*).
Áp dụng BĐT Co-si cho hai số dương m2 và 1, ta có:
m2+1\(\ge\)2\(\sqrt{m^2.1}\)=2|m|.
Dấu "=" xảy ra khi và chỉ khi m2=1 \(\Rightarrow\) m=\(\pm\)1.
Với m=1, x=1.
Với m=-1, x=-1.
So sánh hai giá trị của x, ta kết luận: giá trị m cần tìm là m=1.
-ĐKXĐ: \(x\ne5\)
\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)
\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)
\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)
\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)
\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)
\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)
-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\left(m-1\right)^2\ne0\Leftrightarrow m\ne1\)
-Sửa lại:
-ĐKXĐ: \(x\ne5\)
\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)
\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)
\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)
\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)
\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)
\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)
-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\ne5\Leftrightarrow\dfrac{2m^2-10m-1}{m^2-2m+1}\ne5\Leftrightarrow\dfrac{2m^2-10m-1}{m^2-2m+1}\ne\dfrac{5m^2-10m+5}{m^2-2m+1}\Leftrightarrow2m^2-10m-1\ne5m^2-10m+5\Leftrightarrow3m^2+6\ne0\)(luôn đúng)
-Vậy với \(m\in R\) thì pt có nghiệm duy nhất.
\(m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\) \(\forall m\Rightarrow\) phương trình là bậc nhất một ẩn với mọi m
Ta có \(x=\frac{m^2-m+1}{m^2+m+1}=\frac{3\left(m^2+m+1\right)-2m^2-4m-2}{m^2+m+1}=3-\frac{2\left(m+1\right)^2}{m^2+m+1}\le3\)
\(\Rightarrow x_{max}=3\) khi \(m=-1\)
\(x=\frac{3m^2-3m+3}{3\left(m^2+m+1\right)}=\frac{m^2+m+1+2m^2-4m+2}{3\left(m^2+m+1\right)}=\frac{1}{3}+\frac{2\left(m-1\right)^2}{m^2+m+1}\ge\frac{1}{3}\)
\(x_{min}=\frac{1}{3}\) khi \(m=1\)