K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2023

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

<=> \(\left[-\left(2m+5\right)\right]^2-4.1.\left(2m+1\right)>0\)

\(\Leftrightarrow4m^2+12m+21>0\)

\(\Leftrightarrow4m^2+12m+9+12>0\)

<=> \(\left(2m+3\right)^2+12>0\)

Vì (2m+3)2 luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình đã cho có nghiệm với mọi giá trị m.

Theo viét:

\(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=2m+1\end{matrix}\right.\)

Theo đề:

\(M=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) (điều kiện: \(x_1;x_2\ge0\))

=> \(M^2=x_1+x_2-2\sqrt{x_1x_2}=2m+5-2\sqrt{2m+1}\)

<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}\right)-2\sqrt{\left(2m+1\right)}+4\)

<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}-2\right)+4\)

<=> \(M^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)

=> \(M\ge2\).

Dấu "=" xảy ra khi m = 0

Thế m = 0 vào phương trình ở đề được:

\(x^2-5x+1=0\)

Phương trình này có hai nghiệm dương -> thỏa mãn điều kiện.

Vậy min M = 2 và m = 0

T.Lam

13 tháng 5 2021

Phương trình có 2 nghiệm phân biệt ⇔ △ > 0

⇔ 4m2 + 20m + 25 - 8m - 4 > 0

⇔ 4m2 + 12m + 21 > 0

⇔ (2m + 3)2 + 12 > 0 ⇔ m ∈ R

Theo hệ thức Viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1.x_2=2m+1\end{matrix}\right.\)

=> P2 = (\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\))2 = (\(\sqrt{x_1}-\sqrt{x_2}\))2

                                       = x1 + x2 - 2\(\sqrt{x_1.x_2}\)

                                       = 2m + 5 - 2\(\sqrt{2m+1}\)

                                       = 2m + 1 - 2\(\sqrt{2m+1}\) + 1 + 3

                                       = (\(\sqrt{2m+1}\) - 1)2 + 3 ≥ 3 ∀m

=> P ≥ \(\sqrt{3}\) 

Dấu "=" xảy ra ⇔ \(\sqrt{2m+1}\) - 1 = 0 ⇔ \(\sqrt{2m+1}\)=1 ⇔ 2m + 1 = 1 ⇔ m = 0

Vậy với m = 0 thì P đạt GTNN = \(\sqrt{3}\)

NV
10 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-3\end{matrix}\right.\)

Ta có: \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\ge0\)

\(\Rightarrow P_{min}=0\) khi \(x_1+x_2=0\Leftrightarrow m=-1\)

Đề là yêu cầu tìm max hay min nhỉ? Min thế này thì có vẻ là quá dễ

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

3 tháng 8 2021

\(\Delta=4m^2-4m+1-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)

Do đó pt luôn có nghiệm

Theo định lí Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)

Lại có: \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=\left(2m-1\right)^2-2\left(2m-2\right)\)           

\(A=4m^2-4m+1-4m+4\)

\(A=4m^2-8m+5\)

\(A=4\left(m-1\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\) m=1

Tick hộ nha 😘

3 tháng 8 2021

pt có nghiệm \(< =>\Delta\ge0\)

\(< =>[-\left(2m-1\right)]^2-4\left(2m-2\right)\ge0\)

\(< =>4m^2-4m+1-8m+8\ge0\)

\(< =>4m^2-12m+9\ge0\)

\(< =>4\left(m^2-3m+\dfrac{9}{4}\right)\ge0\)

\(=>m^2-2.\dfrac{3}{2}m+\dfrac{9}{4}\ge0< =>\left(m-\dfrac{2}{3}\right)^2\ge0\)(luôn đúng)

=>pt luôn có 2 nghiệm 

theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m-1\\x1x2=2m-2\end{matrix}\right.\)

\(A=\left(x1+x2\right)^2-2x1x2=\left(2m-1\right)^2-2\left(2m-2\right)\)

\(A=4m^2-4m+1-4m+4=4m^2+5\ge5\)

dấu"=" xảy ra<=>m=0

29 tháng 5 2022

1.Thế `m=2` vào pt, ta được:

\(x^2-2\left(2-1\right)x+2-5=0\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) ( Vi-ét )

2.

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

\(P=\left|x_1-x_2\right|\)

\(\Leftrightarrow P^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(\Leftrightarrow P^2=\left[2\left(m-1\right)\right]^2-4\left(m-5\right)\)

\(\Leftrightarrow P^2=4\left(m-1\right)^2-4\left(m-5\right)\)

\(\Leftrightarrow P^2=4m^2-8m+4-4m+20\)

\(\Leftrightarrow P^2=4m^2-12m+24\)

\(\Leftrightarrow P^2=\left(2m-3\right)^2+15\)

\(P^2\ge15\)

mà \(P\ge0\)

\(\Rightarrow Min_P=\sqrt{15}\)

Dấu "=" xảy ra khi \(2m-3=0\) \(\Leftrightarrow m=\dfrac{3}{2}\)

Vậy \(Min_P=\sqrt{15}\) khi \(m=\dfrac{3}{2}\)

 

29 tháng 5 2022

\(x^2-2(m-1)x+m-5=0\ \ (1) \\1)Thay\ m=2\ vào\ (1)\ ta\ có: \\x^2-2(2-1)x+2-5=0 \\<=>x^2-2x-3=0<=>(x+1)(x-3)=0<=>x=-1\ hoặc\ x=3 \\2)\triangle'=[-(m-1)]^2-1.(m-5)=m^2-3m+6>0\ với\ mọi\ m \\->Phương\ trình\ (1)\ luôn\ có\ 2\ nghiệm\ phân\ biệt\ với\ mọi\ m. \\Theo\ hệ\ thức\ Vi-ét\ ta\ có: \\x_1+x_2=2(m-1);x_1x_2=m-5 \)

\(Ta\ có: P^2=x_1^2-2x_1x_2+x_2^2=(x_1+x_2)^2-4x_1x_2 \\=[2(m-1)]^2-4(m-5)=4(m-\dfrac{3}{2})^2+15\ge15 \\->P\ge\sqrt{15} \\Đẳng\ thức\ xảy\ ra\ khi\ m=\dfrac{3}{2}. \\Vậy\ P\ nhỏ\ nhất\ bằng\ \sqrt{15}\ (khi\ m=\dfrac{3}{2}).\)

24 tháng 3 2022

b1: tìm đk m t/m: Δ>0 ↔ m∈(\(\dfrac{1-\sqrt{10}}{2}\) ; \(\dfrac{1+\sqrt{10}}{2}\))

b2: ➝x1+x2 =-2m-1 (1)

      → x1.x2=m^2-1 (2)

b3: biến đổi : (x1-x2)^2 = x1-5x2

↔ (x1+x2)^2 -4.x1.x2 -(x1+x2) +6.x2=0

↔4.m^2 +4m +1 - 4.m^2 +4 +2m+1+6. x2=0

↔x2= -m-1

B4: thay x2= -m-1 vào (1) → x1 = -m

     Thay x2 = -m-1, x1 = -m vào (2) 

→m= -1

B5: thử lại:

Với m= -1 có pt: x^2 -x =0

Có 2 nghiệm x1=1 và x2=0 (thoả mãn)