Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)` Phương trình hoành độ của `(P)` và `(d)` là:
`x^2=(2m+2)x-m-2m`
`<=>x^2-2(m+1)x+3m=0` `(1)`
`(P)` cắt `(d)` tại `2` điểm `A,B<=>` Ptr `(1)` có `2` nghiệm phân biệt
`=>\Delta' > 0`
`<=>(m+1)^2-3m > 0`
`<=>m^2+2m+1-3m > 0`
`<=>m^2-m+1 > 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=3m):}`
Ta có: `{(2x_1+x_2=5),(x_1+x_2=2m+2):}`
`<=>{(x_1=3-2m),(3-2m+x_2=2m+2):}`
`<=>{(x_1=3-2m),(x_2=4m-1):}`
Thay vào `x_1.x_2=3m`
`=>(3-2m)(4m-1)=3m`
`<=>12m-3-8m^2+2m=3m`
`<=>8m^2-11m+3=0`
`<=>(m-1)(8m-3)=0<=>[(m=1),(m=3/8):}`
PTHĐGĐ là:
x^2-(2m+1)x+m^2+m-6=0
Δ=(2m+1)^2-4(m^2+m-6)
=4m^2+4m+1-4m^2-4m+24
=25>0
=>Phương trình luôn có hai nghiệm phân biệt
\(\left|x_1^2-x_2^2\right|=50\)
\(\Leftrightarrow\left|\left(2m+1\right)\right|\cdot\sqrt{\left(2m+1\right)^2-4\left(m^2+m-6\right)}=50\)
\(\Leftrightarrow\left|2m+1\right|\cdot5=50\)
=>|2m+1|=10
=>m=9/2 hoặc m=-11/2
a: Phương trình hoành độ giao điểm là:
\(x^2=2mx+2m+8\)
=>\(x^2-2mx-2m-8=0\)(1)
Thay m=-4 vào (1), ta được:
\(x^2-2\cdot\left(-4\right)\cdot x-2\cdot\left(-4\right)-8=0\)
=>\(x^2+8x=0\)
=>x(x+8)=0
=>\(\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Thay x=0 vào (P), ta được:
\(y=0^2=0\)
Thay x=-8 vào (P), ta được:
\(y=x^2=\left(-8\right)^2=64\)
Vậy: (P) và (d) cắt nhau tại O(0;0) và A(-8;64)
b: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(-2m-8\right)\)
\(=4m^2+8m+32\)
\(=4m^2+8m+4+28=\left(2m+2\right)^2+28>=28>0\forall m\)
=>Phương trình (1)luôn có hai nghiệm phân biệt
=>(P) luôn cắt (d) tại hai điểm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1\cdot x_2=\dfrac{c}{a}=-2m-8\end{matrix}\right.\)
mà \(x_1+2x_2=2\) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+2x_2=2\\x_1+x_2=2m\\x_1\cdot x_2=-2m-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_2=2-2m\\x_1=2m-2+2m=4m-2\\x_1\cdot x_2=-2m-8\end{matrix}\right.\)
=>(2-2m)(4m-2)=-2m-8
=>\(8m-4-8m^2+4m=-2m-8\)
=>\(-8m^2+12m-4+2m+8=0\)
=>\(-8m^2+14m+4=0\)
=>\(-8m^2+16m-2m+4=0\)
=>-8m(m-2)-2(m-2)=0
=>(m-2)(-8m-2)=0
=>\(\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{4}\end{matrix}\right.\)
a. Em tự giải
b,
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=2mx+2m+8\Leftrightarrow x^2-2mx-2m-8=0\) (1)
\(\Delta'=m^2+2m+8=\left(m+1\right)^2+7>0;\forall m\)
\(\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb với mọi m hay (d) luôn cắt (P) tại 2 điểm pb.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2m-8\end{matrix}\right.\)
Kết hợp hệ thức Viet và đề bài ta được:
\(\left\{{}\begin{matrix}x_1+2x_2=2\\x_1+x_2=2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=-2m+2\\x_1=4m-2\\\end{matrix}\right.\)
Thế vào \(x_1x_2=-2m-8\)
\(\Rightarrow\left(4m-2\right)\left(-2m+2\right)=-2m-8\)
\(\Leftrightarrow8m^2-14m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{4}\end{matrix}\right.\)
Phương trình hoành độ giao điểm:
\(x^2-\left(2m+1\right)x+m^2+m-6=0\left(1\right)\)
Ta có:
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25>0\forall m\)
\(\Rightarrow\) Phương trình (1) luôn có hai nghiệm phân biệt.
Theo định lí Vi-et \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-6\end{matrix}\right.\)
\(\Rightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)
\(\Rightarrow\left|x_1-x_2\right|=5\)
Lại có:
\(x_1^2+x_2^2+x_1x_2=\left(x_1+x_2\right)^2-x_1x_2=\left(2m+1\right)^2-\left(m^2+m-6\right)=3m^2+3m+7\)
Khi đó \(\left|x_1^3-x_2^3\right|=50\)
\(\Leftrightarrow\left|x_1-x_2\right|\left(x_1^2+x_2^2+x_1x_2\right)=50\)
\(\Leftrightarrow5\left(3m^2+3m+7\right)=50\)
\(\Leftrightarrow m^2+m-1=0\)
\(\Leftrightarrow m=\dfrac{-1\pm\sqrt{5}}{2}\)
Em kiểm tra lại đề, đề bài sai
Ví dụ với \(m=0\) thì (d) là \(y=2x-3\), khi đó pt hoành độ giao điểm (P) và (d) là \(x^2=2x-3\Leftrightarrow x^2-2x+3=0\) vô nghiệm nên (d) và (P) ko có điểm chung
Phương trình hoành độ giao điểm là:
\(\left(2m-1\right)x^2=2\left(m+4\right)x-5m-2\)
=>\(\left(2m-1\right)x^2-\left(2m+8\right)x+5m+2=0\)
Để (P) cắt (d) tại hai điểm phân biệt thì
\(\left\{{}\begin{matrix}2m-1\ne0\\\text{Δ}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\\left(2m+8\right)^2-4\left(2m-1\right)\left(5m+2\right)>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\4m^2+32m+64-4\left(10m^2+4m-5m-2\right)>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\4m^2+32m+64-40m^2+4m+8>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\-36m^2+36m+72>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m^2-m-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\\left(m-2\right)\left(m+1\right)< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\-1< m< 2\end{matrix}\right.\)
Theo vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2m-8\right)}{2m-1}=\dfrac{2m+8}{2m-1}\\x_1x_2=\dfrac{5m+2}{2m-1}\end{matrix}\right.\)
\(x_1^2+x^2_2=2x_1x_2+16\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2-2x_1x_2=16\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=16\)
=>\(\left(\dfrac{2m+8}{2m-1}\right)^2-4\cdot\dfrac{5m+2}{2m-1}=16\)
=>\(\dfrac{\left(2m+8\right)^2-4\left(5m+2\right)\left(2m-1\right)}{\left(2m-1\right)^2}=16\)
=>\(\dfrac{4m^2+32m+64-4\left(10m^2-m-2\right)}{\left(2m-1\right)^2}=16\)
=>\(-36m^2+36m+72=16\left(4m^2-4m+1\right)\)
=>\(-36m^2+36m+72=64m^2-64m+16\)
=>\(-100m^2+100m+56=0\)
=>\(\left[{}\begin{matrix}m=\dfrac{7}{5}\left(nhận\right)\\m=-\dfrac{2}{5}\left(nhận\right)\end{matrix}\right.\)
Phương trình hoành độ giao điểm:
\(x^2-2\left(m+1\right)x+m^2+2m=0\)
\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt \(\left\{{}\begin{matrix}x_1=m+1+1=m+2\\x_2=m\end{matrix}\right.\)
\(2x_1+x_2=5\Leftrightarrow3m+4=5\Rightarrow m=\frac{1}{3}\)
Hoặc \(\left\{{}\begin{matrix}x_1=m\\x_2=m+2\end{matrix}\right.\)
\(\Rightarrow2x_1+x_2=5\Leftrightarrow3m+2=5\Leftrightarrow m=1\)