Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (P) và (d) là :
\(x^2=2\left(m+3\right)x-m^2-3.\)
\(\Leftrightarrow x^2-2\left(m+3\right)x+m^2+3=0\left(1\right)\)
\(\Delta'=[-\left(m+3\right)]^2-m^2-3=m^2+6m+9-m^2-3=6m+6\)
Để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 ; x2 thì phương trình (1) có hai nghiệm phân biệt x1 x2.
\(\Rightarrow\Delta'>0\Leftrightarrow6m+6>0\Leftrightarrow m>-1\)
Theo vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+3\end{cases}}\)
Thay vào hệ thức : \(x_1+x_2-\frac{x_1x_2}{x_1+x_2}=\frac{57}{4}\)ta được.
\(2\left(m+3\right)-\frac{m^2+3}{2\left(m+3\right)}=\frac{57}{4}\Leftrightarrow\frac{4\left(m+3\right)^2-m^2-3}{2\left(m+3\right)}=\frac{57}{4}\)
\(\Leftrightarrow\frac{4m^2+24m+36-m^2-3}{2m+6}=\frac{57}{4}\Leftrightarrow\frac{3m^2+24m+33}{2m+6}=\frac{57}{4}\)
\(\Leftrightarrow12m^2+96m+132=114m+342\)\(\Leftrightarrow12m^2-18m-210=0\Leftrightarrow2m^2-3m-35=0\)
\(m_1=5\left(TM\right);m_2=-\frac{7}{2}\left(KTM\right)\)
Vậy \(m=5\).
1) Thay x=0;y=1 vào (d)=>m=2
Hoành độ giao điểm là nghiệm của phương trình:\(x^2=x+m-1\)
\(x^2-x-m+1=0\)2 điểm phân biệt => \(\Delta>0\)
\(\Delta>0=>1-4.\left(-m+1\right)=4m-3>0=>m>\frac{3}{4}\)
Áp dụng hệ thức Vi-ét:
\(x_1+x_2=1;x_1x_2=-m+1\)
\(4.\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-x_1x_2+3=0=>4.\left(\frac{x_1+x_2}{x_1x_2}\right)-x_1x_2+3=0\)
\(\Rightarrow\frac{4}{-m+1}+m-1+3=0=>\frac{4}{-m+1}+m-2=0=>m^2-3m-2=0\)
Dùng công thức nghiệm được \(\Rightarrow x_1=\frac{3-\sqrt{17}}{2}\left(KTM\right);x_2=\frac{3+\sqrt{17}}{2}\left(TM\right)\)
Vậy...
*) xét pt hoành độ giao điểm của d và (P)
-x2=2x+m-1
<=> \(x^2+2x+m-1=0\left(1\right)\)
Có \(\Delta'=1-m+1=2-m\)
*) Để d giao với (P) tại 2 điểm phân biệt
<=> pt (1) có 2 nghiệm phân biệt \(x_1;x_2\)
<=> \(\Delta'>0\Leftrightarrow m< 2\)
*) áp dụng Vi-et \(\hept{\begin{cases}x_1+x_2=\frac{-b}{2a}=-1\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
*) Có: \(x_1^3-x_2^3+x_1x_2=4\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+x_1x_2=4\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(5-m\right)=5-m\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=1\\x_1+x_2=-1\end{cases}\Rightarrow\hept{\begin{cases}x_1=\frac{-1}{2}\\x_2=\frac{-3}{2}\end{cases}}}\)
\(\Rightarrow m-1=x_1x_2=\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)=\frac{3}{4}\)
<=> \(m=\frac{7}{4}\)(tmđk m<2)
Vừa nãy mình viết nhầm Vi-et. Mình làm lại
Xét pt hoành độ của d và (P) có:
\(-x^2=2x+m-1\)
\(\Leftrightarrow x^2+2x+m-1=0\left(1\right)\)
Có \(\Delta'=1-m+1=2-m\)
Để d cắt (P) tại 2 điểm phân biệt <=> pt (1) có 2 nghiệm phân biệt
<=> \(\Delta'>0\Leftrightarrow m< 2\)
Theo Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
Có \(x_1^3-x_2^3+x_1x_2=4\)
<=> \(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+x_1x_2=4\)
<=> \(\left(x_1-x_2\right)\left(5-m\right)=5-m\)
<=> \(\hept{\begin{cases}x_1-x_2=1\\x_1+x_2=-1\end{cases}\Rightarrow\hept{\begin{cases}x_1=\frac{-1}{2}\\x_2=\frac{-3}{2}\end{cases}}}\)
=> m-1=\(x_1x_2=\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)=\frac{3}{4}\)
<=> \(m=\frac{7}{4}\)(tmđk)
a, Thay m =-1 vào (d) ta được : \(y=-2x\)
Hoành độ giao điểm (P) ; (d) thỏa mãn pt
\(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;x=-2\)
Với x = 0 => y = 0
Với x = -2 => y = 4
Vậy với m = -1 thì (P) cắt (D) tại O(0;0) ; A(-2;4)
b, Hoành độ giao điểm (P) ; (d) thỏa mãn pt
\(x^2-2mx-m-1=0\)
\(\Delta'=m^2-\left(-m-1\right)=m^2+m+1>0\forall m\)
Vậy pt luôn có 2 nghiệm pb hay (P) cắt (d) tại 2 điểm pb
c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Ta có : \(\left(x_1+x_2\right)^2-5x_1x_2\)Thay vào ta được
\(4m^2-5\left(-m-1\right)=4m^2+5m+5\)
\(=4m^2+\frac{2.2m.5}{4}+\frac{25}{16}-\frac{25}{16}+5=\left(2m+\frac{5}{4}\right)^2+\frac{55}{16}\ge\frac{55}{16}\)
Dấu ''='' xảy ra khi m = -5/88
Vậy với m = -5/88 thì GTNN của biểu thức trên là 55/16
Pt hoành độ giao điểm: \(x^2-2\left(m-2\right)x-5=0\)
\(\Delta'=\left(m-2\right)^2+5>0;\forall m\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)
Do \(\left\{{}\begin{matrix}x_1x_2< 0\\x_1< x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2+2\right|=10\)
\(\Leftrightarrow-x_1+x_2+2=10\Leftrightarrow x_2-x_1=8\)
\(\Leftrightarrow\left(x_2-x_1\right)^2=64\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=64\)
\(\Leftrightarrow4\left(m-2\right)^2+20=64\)
\(\Leftrightarrow\left(m-2\right)^2=11\Rightarrow\left[{}\begin{matrix}m=2+\sqrt{11}\\m=2-\sqrt{11}\end{matrix}\right.\)
Phương trình hoành độ giao điểm:
\(x^2-\left(2m+1\right)x+m^2+m-6=0\left(1\right)\)
Ta có:
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25>0\forall m\)
\(\Rightarrow\) Phương trình (1) luôn có hai nghiệm phân biệt.
Theo định lí Vi-et \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-6\end{matrix}\right.\)
\(\Rightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)
\(\Rightarrow\left|x_1-x_2\right|=5\)
Lại có:
\(x_1^2+x_2^2+x_1x_2=\left(x_1+x_2\right)^2-x_1x_2=\left(2m+1\right)^2-\left(m^2+m-6\right)=3m^2+3m+7\)
Khi đó \(\left|x_1^3-x_2^3\right|=50\)
\(\Leftrightarrow\left|x_1-x_2\right|\left(x_1^2+x_2^2+x_1x_2\right)=50\)
\(\Leftrightarrow5\left(3m^2+3m+7\right)=50\)
\(\Leftrightarrow m^2+m-1=0\)
\(\Leftrightarrow m=\dfrac{-1\pm\sqrt{5}}{2}\)
Cảm ơn Hồng Phúc CTV