\(\left(P\right)=x^2\)  và \(d=2\left(m+1\right)-2m-1\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2020

Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)

PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)

=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m

Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)

Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)

Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
13 tháng 5 2019

Bạn tham khảo tại đây nhé:

Câu hỏi của KHÔNG CẦN BIẾT - Toán lớp 7 - Học toán với OnlineMath

a, thay m = 3 vào pt ta đc

x2  - ( 2 . 3 +1)x + 2.3 = 0

x2  - 7x + 6 =0

ta có a + b+c= 1 -7 + 6=0

\(\Rightarrow\)pt có 2 nghiệm pb x1 = 1 

                                       x2 = 6

b, x2 - (2m +1 )x + 2m=0

 \(\Delta\)= [ - (2m + 1 )]2  - 4.2m

        = 4m2 + 4m + 1 - 8m 

          = 4m2 - 4m + 1 

         = (2m-1)2 \(\ge\)\(\forall\)m

để pt có 2 nghiệm pb thì   2m - 1 \(\ne\)

                                          m \(\ne\)1/2

theo hệ thức vi ét ta có

x1 + x2 = 2m + 1

x1 x2 = 2m

ta có | x1| - |x2| = 2

       ( |x1| - |x2| )2 = 4

       x12  - 2 |x1x2| + x22   =4

        x12 + 2 x1x2 + x22 - 2x1x2 - 2 | x1x2| = 4

  ( x1 + x2)2  - 2 |x1x2| = 4

(2m + 1 )2 - 2|2m|=4   (1 )

+, nếu 2m \(\ge\)\(\Rightarrow\)\(\ge\)0 thì

(1)\(\Leftrightarrow\)(2m + 1)2  - 4m = 4

                   4m2 + 4m + 1 - 4m = 4

                     4m2 = 3

                        m2 = 3/4

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{3}}{2}\left(tm\right)\\m=-\frac{\sqrt{3}}{4}\left(ktm\right)\end{cases}}\)

+, 2m < 0 suy ra m < 0 thì 

(1) : (2m + 1 )2  + 4m =4

          4m2 + 4m + 1 + 4m = 4

           4m2 + 8m - 3 =0

       \(\Delta\)= 64 + 4.4.3 = 112 > 0

pt có 2 nghiệm pb x1 = \(\frac{-8+\sqrt{112}}{8}\)\(\frac{-2+\sqrt{7}}{2}\)(ko tm)

                                x2 = \(\frac{-2-\sqrt{7}}{2}\)(tm)

vậy m \(\in\){\(\frac{\sqrt{3}}{2}\)\(\frac{-2-\sqrt{7}}{2}\)} thì ...........

ko bt có đúng ko nữa 

#mã mã#

30 tháng 3 2019

Phương trình hoành độ giao điểm của (P) và (d) là :

\(x^2=2\left(m+3\right)x-m^2-3.\)

\(\Leftrightarrow x^2-2\left(m+3\right)x+m^2+3=0\left(1\right)\)

\(\Delta'=[-\left(m+3\right)]^2-m^2-3=m^2+6m+9-m^2-3=6m+6\)

Để (d) cắt (P) tại hai điểm phân biệt có hoành độ x; x2 thì phương trình (1) có hai nghiệm phân biệt xx2.

\(\Rightarrow\Delta'>0\Leftrightarrow6m+6>0\Leftrightarrow m>-1\)

Theo vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+3\end{cases}}\)

Thay vào hệ thức : \(x_1+x_2-\frac{x_1x_2}{x_1+x_2}=\frac{57}{4}\)ta được.

\(2\left(m+3\right)-\frac{m^2+3}{2\left(m+3\right)}=\frac{57}{4}\Leftrightarrow\frac{4\left(m+3\right)^2-m^2-3}{2\left(m+3\right)}=\frac{57}{4}\)

\(\Leftrightarrow\frac{4m^2+24m+36-m^2-3}{2m+6}=\frac{57}{4}\Leftrightarrow\frac{3m^2+24m+33}{2m+6}=\frac{57}{4}\)

\(\Leftrightarrow12m^2+96m+132=114m+342\)\(\Leftrightarrow12m^2-18m-210=0\Leftrightarrow2m^2-3m-35=0\)

\(m_1=5\left(TM\right);m_2=-\frac{7}{2}\left(KTM\right)\)

Vậy \(m=5\).