K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2022

Ta có : p8n+3p4n- 4 = (p4n)2+3p4n- 4

Vì p là số nguyên tố lớn hơn 5 nên p có tận cùng là chữ số 1;3;7 hoặc 9

+) Với p = (...1), ta có: p4n=(...1)4n=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

+) Với p = (...3), ta có: p4n=(...3)4n=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

+) Với p = (...7), ta có: p4n=(...7)4n=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

+) Với p = (...9), ta có: p4n=[(...9)2n]2=(...1)2=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

Vậy p8n+3p4n- 4 chia hết cho 5 khi p là số nguyên tố lớn hơn 5

4 tháng 1 2018

Bài 1 :

 Gọi đó là p, q, r > 3 => p, q, r không chia hết cho 3. 
=> theo nguyên lý Dirichlet trong 3 số p, q, r phải có ít nhất 2 số chia cho 3 cho cùng số dư. 
Do 2d = 2(q - p) = 2(r - q) = r - p nên 2d chia hết cho 3 => d chia hết cho 3. 
d = q - p cũng chia hết cho 2 do p, q đều lẻ 
Vậy d chia hết cho 2*3 = 6

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

22 tháng 10 2015

câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3

=>16p(8p+1)(4p+1) chia het cho 3

mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3

31 tháng 12 2017

ta có, P là số nguyên tố >3 => P+5 và P+7 là 2 số chãn liên tiếp, mà 2 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 4 và số còn lại chia hết cho 2

=> tích của nó chia hết cho 8 => (P+5)(P+7) chia hết cho 8 (1)

mà P là số nguyên tố > 3 => P chia 3 có thể dư 1 hoặc dư 2 

nếu P chia 3 dư 1 => p+5 chia hết cho 3 

nếu p chia 3 dư 2 => P+7 chia hết cho 3 

=> (P+5)(P+7) luôn chia hết cho 3 với P là số nguyên tố lớn hơn 3 (2)

từ (1) và (2 ) => (p+5)(p+7 ) chia hết cho 24 (ĐPCM)

3 tháng 4 2015

ta có

p^4-q^4=(p^4-1)+(q^4-1)

xét hiệu:p^4-1=(p^2)^2-1^4

                    =(p^2-1)(p^2+1)=(p+1)(p-1)(p^2+1)              (*)

Ta thấy p+1 và p-1 là hai số chãn liên tiếp=>(p+1)(p-1)chia hết cho 8.Đặt (p+1)(p-1)=8n

Mặt khác p^2+1 là số chẵn.Dặt p^2+1=2k

thay vào (*) ta có p^4-1=2k8n=16knchia hết cho 16            (1)

mặt khác vì p là số nguyên tố lớn hơn 5=>p^4 chia cho 3 dư 1=>p^4-1 chia hết cho 3          (2)

mặt khascvif p là số nguyên tố lớn hơn 5 nên khi p chia cho 5 sẽ nhận được các số dư là 1,2,3,4

Với p=5m+1=>p-1 chia hết cho 5

Với p=5m+2=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5

Với p=5m+3=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5

Với p=5m+4=>p^4chia cho 5 dư 1=>p^4-1 chia hết cho 5

Tóm lại qua mỗi trường hợp thì p^4-1 đều chia hết cho 5              (3)

Từ (1),(2)và(3)=>p^4-1 chia hết cho 16.3.5=240

chứng minh tương tự với q^4-1=>q^4-1 chia hết cho 240

=>p^4-q^4 chia hết cho 240

7 tháng 1 2016

Mình chẳng gì ngoài T/H2:p^4-q^4=(p^4+1)-(q^4+1)

Còn cách chứng minh như trên

Mình chưa chắc đâu,lỡ sai đừng trách mình!

                                                                                                                               Buồn!hu...hu..!