K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

M P Q O H I K

a) Ta thấy OM là trung trực của PQ => OM vuông góc PQ => ^OKI = ^OHM = 900

=> \(\Delta\)OKI ~ \(\Delta\)OHM (g.g) => OH.OI = OK.OM (đpcm).

b) Áp dụng hệ thức lượng trong tam giác vuông có: OH.OI = OK.OM = OP2 = R2

Vì d,O đều cố định nên khoẳng cách từ O tới d không đổi hay OH không đổi

Vậy \(OI=\frac{R^2}{OH}=const\). Mà tia OI cố định nên I cố định (đpcm).

26 tháng 5 2019

Mình không vẽ hình được bạn thông cảm nhé

Gọi K là giao điểm của OM và AB

Xét tam giác MBO vuông có

OK.OM=OB^2=R^2

VÌ H là trung điểm của CD

=> \(OH\perp CD\)

=> tam giác EKO đồng dạng tam giác MHO

=> OH.OE=OK.OM=R^2=OC^2

=> \(\frac{OH}{OC}=\frac{OC}{OE}\)

=> tam giác EHC đồng dạng tam giác ECO

=> ECO=90độ

=> EC là tiếp tuyến của đường tròn

CMTT ED là tiếp tuyến của đường tròn

MÀ C,D cố định

=> E cố định 

=> AB đi qua E cố định

Vậy AB luôn đi qua một điểm cố định khi M di chuyển trên d

21 tháng 4 2020

M H Q O I K P

a.Ta có :MP,MQ là tiếp tuyến của (O)

\(\Rightarrow MP\perp OP,MQ\perp OQ\)

Mà \(OH\perp MH\Rightarrow M,H,O,P\) cùng thuộc đường tròn đường kính MO 

b.Ta có : M,H,Q,O,P cùng thuộc một đường tròn

\(\Rightarrow\widehat{IHQ}=\widehat{IPQ}\)

Mà \(\widehat{HIQ}=\widehat{PIO}\Rightarrow\Delta IPO~\Delta IHQ\left(g.g\right)\)

\(\Rightarrow\frac{IO}{IQ}=\frac{IP}{IH}\Rightarrow IH.IO=IQ.IP\)

c.Ta có :

\(MP,MQ\) là tiếp tuyến của (O)

\(\Rightarrow PQ\perp MO\Rightarrow\widehat{OKI}=\widehat{OHM}\left(=90^0\right)\)

\(\Rightarrow\Delta OKI~\Delta OHM\left(g.g\right)\)

\(\Rightarrow\frac{OK}{OH}=\frac{OI}{OM}\Rightarrow OM.OK=OI.OH\)

Mà \(PK\perp OM,OP\perp MP\Rightarrow OK.OM=OP^2=R^2\)

\(\Rightarrow OI.OH=R^2\Rightarrow OI=\frac{R^2}{OH}\)

Vì \(OH\perp d\) cố định  \(\Rightarrow H\)cố định \(\Rightarrow I\) cố định 

\(\Rightarrow IP.IQ=IO.IH\) không đổi 

d ) Ta có : 

\(\widehat{PMQ}=60^0\Rightarrow\widehat{KOQ}=\widehat{KOP}=60^0\)

 Mà \(OK=\frac{1}{2}OQ=\frac{1}{2}R\)Lại có : \(\widehat{MOQ}=60^0,OQ\perp MQ\Rightarrow\Delta MQO\)là nửa tam giác đều\(\Rightarrow MO=2OQ=2R\Rightarrow MK=OM-OK=\frac{3}{2}R\)\(\Rightarrow\frac{S_{MPQ}}{S_{OPQ}}=\frac{\frac{1}{2}MK.PQ}{\frac{1}{2}OK.PQ}=\frac{MK}{OK}=\frac{3}{4}\)
21 tháng 11 2016

chịu

k nha

15 tháng 9 2021

a/ Ta có \(OM\perp PQ\) (Hai tt cùng xuất phát từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi đường nối 2 tiếp điểm)

Xét tg vuông OIK và tg vuông OMH có \(\widehat{HOM}\) chung => tg OIK đồng dạng tg OMH

\(\Rightarrow\frac{OI}{OM}=\frac{OK}{OH}\Rightarrow OH.OI=OM.OK\)

Xét tg vuông QMO 

\(OQ^2=R^2=OK.OM\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow OH.OI=OM.OK=R^2\left(dpcm\right)\)

b/ Ta có

\(OH.OI=R^2\Rightarrow OI=\frac{R^2}{OH}\)

Ta có d cố định, O cố định => OH cố định và không đổi

\(R^2\)không đổi 

=> OI không đổi

=> I nằm trên đường thẳng OH cố định và cách O cố định 1 khoảng OI không đổi => I cố định

c/ Không hiểu đề bài