K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc EAF=90 độ, M là trung điểm của EF

=>MA=ME=MF

=>góc MAE=góc MEA
AC*AE=AD*AF
=>AC/AD=AF/AE

=>ΔACD đồng dạng với ΔAFE

=>góc ACD=góc AFE

AM cắt CD tại L

góc LCA+góc LAC=góc AEF+góc AFE=90 độ

=>AM vuông góc CD

 

2 tháng 10 2016

có ai câu nữa trước 2 phần a và b nêu trên nhưng mk giải đk rồi. 

các bạn giải hộ mk có thể lấy từ dữ liệu của 2 câu này nhé:

1) ACBD là hcn

2) I là trung điểm BE; K là trung điểm BF

3) BI.BK=R^2

26 tháng 5 2018

A B C D P Q O I E

a) Ta có: Đường tròn (O;R) có đường kính CD và điểm A nằm trên cung CD => ^CAD=900

=> ^PAQ=900 => \(\Delta\)APQ vuông tại A

Do PQ là tiếp tuyến của (O) tại B => AB là đường cao của \(\Delta\)APQ

=> ^PAB=^AQP (Cùng phụ ^APQ) hay ^CAO=^DQP

Mà \(\Delta\)AOC cân tại O => ^CAO=^ACO => ^DQP=^ACO

Lại có: ^ACO+^PCD=1800 => ^DQP+^PCD=1800

=> Tứ giác CPQD nội tiếp đường tròn (đpcm).

b) Xét \(\Delta\)APQ vuông tại A: Có đường trung tuyến AI => \(\Delta\)AIQ cân tại I

=>  ^IAQ=^IQA hay ^IAQ=^DQP => ^IAQ=^ACO (Do ^DQP=^ACO)

Hay ^IAQ=^ACD. Mà ^IAQ+^CAI=900 => ^ACD+^CAI=900 

=> AI vuông góc với CD (đpcm).

c) Ta thấy tứ giác CPQD nội tiếp đường tròn

=> 4 đường trung trực của CP;CD;DQ;PQ cắt nhau tại 1 điểm (1)

E là tâm đường tròn ngoại tiếp \(\Delta\)CPQ => Trung trực của CP và CD cắt nhau tại E (2)

Từ (1) và (2) => Điểm E nằm trên trung trực của PQ.

Lại có: I là trung điểm PQ => E là điểm cách PQ 1 khoảng bằng đoạn EI (*)

AB vuông góc PQ; EI cũng vuông góc PQ => AB//EI hay AO//EI (3)

E thuộc trung trực CD; O là trung điểm CD => OE vuông góc CD.

Mà AI vuông góc CD => OE//AI (4)ư

Từ (3) và (4) => Tứ giác AOEI là hình bình hành => AO=EI (**)

Từ (*) và (**) => E là điểm cách PQ 1 khoảng bằng đoạn AO

Mà AO là bk của (O); PQ là tiếp tuyến của (O) tại B

Nên ta có thể nói: Điểm E là điểm cách tiếp tuyến của (O) tại B một khoảng bằng độ dài bán kính của (O)

Vậy khi đường kính CD thay đổi thì điểm E di động trên đường thẳng song song với tiếp tuyến tại B của đường tròn (O) và cách (O) 1 khoảng bằng độ dài bk của (O).

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc vớiGọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại KXác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo RBài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ...
Đọc tiếp

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất

1

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')

30 tháng 4 2017

a, Chứng minh ∆MEF:∆MOA

b, ∆MEF:∆MOA mà AO=OM => ME=EF

c, Chứng minh F là trực tâm của ∆SAB, AI là đường cao, chứng minh A,I,F thẳng hàng

d, FA.SM = 2 R 2

e,  S M H O = 1 2 OH.MH ≤  1 2 . 1 2 M O 2 = 1 4 R 2

=> M ở chính giữa cung AC

30 tháng 9 2016

AC, AD cắt tiếp tuyến tại B. 

mk viết nhầm