K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 1 2019

Lời giải:

a)

Ta có: \(MP=MQ\) (tính chất 2 tiếp tuyến cắt nhau)

\(OP=OQ=R\)

\(\Rightarrow MO\) là đường trung trực của $PQ$

\(\Rightarrow MO\perp PQ \rightarrow \widehat{OKI}=90^0\)

Xét tam giác $OKI$ và $OHM$ có:

\(\left\{\begin{matrix} \text{chung góc O}\\ \widehat{OKI}=\widehat{OHM}=90^0\end{matrix}\right.\Rightarrow \triangle OKI\sim \triangle OHM(g.g)\)

\(\Rightarrow \frac{OI}{OK}=\frac{OM}{OH}\Rightarrow OI.OH=OK.OM\) (đpcm)

b)

Vì $MQ$ là tiếp tuyến $(O)$ nên $MQ\perp OG$

Xét tam giác vuông $MQO$, có đường cao $QK$ ứng với cạnh huyền $MO$, ta áp dụng hệ thức lượng trong tam giác vuông thì có: \(OK.OM=OQ^2=R^2\)

Kết hợp với kết quả phần a suy ra \(OI.OH=R^2\)

$O$ cố định, $xy$ cố định nên $H$ cố định, suy ra $OH$ cố định

Vậy $R^2$ và $OH$ cố định, do đó $OI$ cố định, kéo theo $I$ là điểm cố định.

Hiển nhiên $I\in PQ$ nên $PQ$ luôn đi qua điểm cố định $I$ khi $M$ thay đổi.

AH
Akai Haruma
Giáo viên
15 tháng 1 2019

Hình vẽ:
Violympic toán 9