K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác CAOK co

góc CAO+góc CKO=180 độ

nên CAOK là tứ giác nội tiếp

b: Xét (O) có

CK,CA là tiếp tuyến

nên CK=CA và OC là phân giác của góc AOK(1)

Xét (O) có

DK,DB là tiếp tuyến

nên DK=DB và OD là phân giác của góc KOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

OK^2=KC*KD

=>AC*BD=R^2 ko đổi

c: Xét ΔOAK có OA=OK=AK

nên ΔOAK đều

=>gócc AOK=60 độ

=>góc KOB=120 độ

=>góc KDB=60 độ

mà DK=DB

nên ΔDKB đều

a: Xét tứ giác CAOM có

góc CAO+góc CMO=180 độ

nên CAOM là tứ giác nội tiếp

b: Xét (O) có

CA,CM là tiêp tuyến

nên CA=CM và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

CM*MD=OM^2

=>CA*BD=R^2

c: CA=CM

OA=OM

=>CO là trung trực của AM

=>CO vuông góc với AM

=>CO//BK

Xét ΔABK có

O là trung điểm của AB

OC//BK

Do đó: C là trung điểm của AK

NV
21 tháng 12 2022

c.

\(CM=AC\) (t/c 2 tiếp tuyến cắt nhau) (1)

\(\widehat{KMC}=\widehat{DMB}\) (đối đỉnh) 

Mà \(DM=DB\) (t/c 2 tiếp tuyến cắt nhau) \(\Rightarrow\Delta DMB\) cân tại D

\(\Rightarrow\widehat{DMB}=\widehat{DBM}\Rightarrow\widehat{KMC}=\widehat{DBM}\)

Lại có: \(\widehat{DBM}=\widehat{AKB}\) (cùng phụ \(\widehat{ABK}\)

\(\Rightarrow\widehat{KMC}=\widehat{AKB}\Rightarrow\Delta CKM\) cân tại C

\(\Rightarrow CK=CM\) (2)

(1);(2) \(\Rightarrow CK=CA\) hay C là trung điểm AK

d.

Qua A kẻ đường thẳng song song BM cắt BD kéo dài tại E

\(\Rightarrow AKBE\) là hbh (2 cặp cạnh đối song song)

\(\Rightarrow\) 2 đường chéo KE và AB cắt nhau tại trung điểm O của AB

Hay K, O, E thẳng hàng

Theo t/c 2 tiếp tuyến ta có \(OD\perp BM\) \(\Rightarrow OD\perp AE\)

Đồng thời \(AB\perp DE\) (gt)

\(\Rightarrow\) O là trực tâm tam giác ADE

\(\Rightarrow OE\perp AD\)

\(\Rightarrow OK\perp AD\)

NV
21 tháng 12 2022

loading...

5 tháng 6 2021

a) Ta có: \(\angle OAC+\angle ODC=90+90=180\Rightarrow OACD\) nội tiếp

b) Xét \(\Delta CDE\) và \(\Delta CBD:\) Ta có: \(\left\{{}\begin{matrix}\angle CDE=\angle CBD\\\angle BCDchung\end{matrix}\right.\)

\(\Rightarrow\Delta CDE\sim\Delta CBD\left(g-g\right)\Rightarrow\dfrac{CD}{CB}=\dfrac{CE}{CD}\Rightarrow CD^2=CB.CE\)

c) BC cắt DF tại G.BD cắt AC tại H

Vì AB là đường kính \(\Rightarrow\angle ADB=90\Rightarrow\Delta ADH\) vuông tại D

có \(CA=CD\) (CA,CD là tiếp tuyến) \(\Rightarrow\) C là trung điểm AH

Vì \(DF\parallel AH\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{GF}{AC}=\dfrac{BG}{BC}\\\dfrac{GD}{CH}=\dfrac{BG}{BC}\end{matrix}\right.\Rightarrow\dfrac{GF}{AC}=\dfrac{GD}{CH}\)

mà \(CA=CH\Rightarrow GF=GD\Rightarrow\) đpcmundefined

14 tháng 5 2021

Ta có: AC là tiếp tuyến của (O) (gt)

=) AC vuông góc OA 

=) Góc OAC = 90độ (1)

Lại có: DC là tiếp tuyến của (O) (gt)

=) DC vuông góc OD

=) Góc ODC = 90độ (2)

Từ (1) và (2) =) góc ODC + góc OAC = 180 độ

Mà 2 góc ở vị trí đối nhau                           

=) Tứ giác OACD nội tiếp

22 tháng 2 2019

a, 

1  Ta có ÐCAB = 900 ( vì tam giác  ABC vuông tại A); ÐMDC = 900 ( góc nội tiếp chắn nửa đường tròn ) =>ÐCDB = 900 như vậy D và A cùng nhìn BC dưới một góc bằng 900 nên A và D cùng nằm trên đường tròn  đường kính BC => ABCD là tứ giác nội tiếp.

     ABCD là tứ giác nội tiếp => ÐD1= ÐC3( nội tiếp cùng chắn cung AB).

ÐD1= ÐC3 => => ÐC= ÐC3 (hai góc nội tiếp đường tròn  (O) chắn hai cung bằng nhau)

=> CA là tia phân giác của góc SCB.

2, Xét DCMB Ta có BA^CM; CD ^ BM; ME ^ BC như vậy BA, EM, CD là ba đường cao của tam giác  CMB nên BA, EM, CD đồng quy.

3, 

Ta có ÐMEC = 900 (nội tiếp chắn nửa đường tròn (O)) => ÐMEB = 900.

Tứ giác AMEB có ÐMAB = 900 ; ÐMEB = 900 => ÐMAB + ÐMEB = 1800 mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đường tròn  => ÐA2 = ÐB2 .

Tứ giác ABCD là tứ giác nội tiếp => ÐA1= ÐB2( nội tiếp cùng chắn cung CD)

=> ÐA1= ÐA2 => AM là tia phân giác của góc DAE (2)

Từ (1) và (2) Ta có M là tâm đường tròn  nội tiếp tam giác  ADE