Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
hay MEDB là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
hay MEDB là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
Xét tứ giác BMED có EM//BD
nên BMED là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
Nối C với E. Xét \(\Delta\)DMF có: C là trung điểm MF; E là trung điểm DM
=> CE là đường trung bình \(\Delta\)DMF => CE // DF hay CE // DN
Xét \(\Delta\)EAC: D là trung điểm AE; DN // CE , N thuộc AC => N là trung điểm AC
Trong \(\Delta\)ABC có: Trung tuyến AM, E thuộc AM (ME=1/3.AM) => E là trọng tâm \(\Delta\)ABC
Do N là trung điểm AC nên BN là trung tuyến \(\Delta\)ABC => BN đi qua E (trọng tâm \(\Delta\)ABC)
Hay 3 điểm B;E;N thẳng hàng (đpcm).
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
hay EM//ID
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
Suy ra: AI=IM
Câu hỏi của bggvf - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
Câu hỏi của bggvf - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại link trên nhé.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE