K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2020

a) Ta có: \(M=\frac{n}{3n+1}=\frac{2n}{2\left(3n+1\right)}=\frac{2n}{6n+2}\)

Vì n là số tự nhiên => 6n+2>6n+1

=> \(\frac{2n}{6n+1}>\frac{2n}{6n+2}\)  hay N>M

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)

1 tháng 3 2017

a) Ta có: 

\(\frac{n+2}{2n+1}=\frac{1}{2}.\frac{2n+4}{2n+1}=\frac{1}{2}.\frac{2n+1+3}{2n+1}=\)

\(=\frac{1}{2}\left(1+\frac{3}{2n+1}\right)\)

\(\frac{n}{2n+3}=\frac{1}{2}.\frac{2n}{2n+3}=\frac{1}{2}.\frac{2n+3-3}{2n+3}\)

=\(\frac{1}{2}\left(1-\frac{3}{2n+3}\right)\)

Ta thấy: \(1+\frac{3}{2n+1}\)>1 và \(1-\frac{3}{2n+3}\)< 1  => \(\frac{1}{2}\left(1+\frac{3}{2n+1}\right)\)\(\frac{1}{2}\left(1-\frac{3}{2n+3}\right)\)

=> \(\frac{n+2}{2n+1}\)\(\frac{n}{2n+3}\)

b) Ta có:

\(\frac{n}{3n+1}=\frac{1}{3}.\frac{3n}{3n+1}=\frac{1}{3}.\frac{3n+1-1}{3n+1}=\)

\(\frac{1}{3}.\left(1-\frac{1}{3n+1}\right)\)

\(\frac{2n}{6n+1}=\frac{1}{3}.\frac{6n}{6n+1}=\frac{1}{3}.\frac{6n+1-1}{6n+1}=\)

=\(\frac{1}{3}.\left(1-\frac{1}{6n+1}\right)\)

Ta thấy: \(\frac{1}{6n+1}< \frac{1}{3n+1}\)(Do 6n+1>3n+1)

=>\(\frac{1}{3}.\left(1-\frac{1}{6n+1}\right)\)\(\frac{1}{3}.\left(1-\frac{1}{3n+1}\right)\)Hay \(\frac{2n}{6n+1}>\frac{n}{3n+1}\)

15 tháng 4 2023

chụp cho 

 

10 tháng 5 2017

Ta có:\(\frac{n}{2n+1}=\frac{3\cdot n}{3\cdot\left(2n+1\right)}\)

                        \(=\frac{3n}{6n+3}\)

Đến đây so sánh tử số.

10 tháng 5 2017

Có \(\frac{n}{2n+1}=\frac{3n}{3\left(2n+1\right)}=\frac{3n}{6n+3}\)

Xét 2 mẫu của phân số: \(6n+3=6n+3\)

Xét 2 tử số của hai phân số: \(3n+1>3n\)

\(\Rightarrow\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)(phân số nào cùng mẫu, có tử lớn hơn thì lớn hơn)

8 tháng 5 2017

\(2P=\frac{2n}{2n+1}=\frac{2n+1-1}{2n+1}=1-\frac{1}{2n+1}.\)

\(2Q=\frac{6n+2}{6n+3}=\frac{6n+3-1}{6n+3}=1-\frac{1}{6n+3}.\)

Nhận thấy: \(\frac{1}{2n+1}>\frac{1}{6n+3}\)

=> \(1-\frac{1}{6n+3}>1-\frac{1}{2n+1}\)

<=> 2Q > 2P

Hay Q > P

8 tháng 5 2017

Cách làm:

Lấy cả 2 số nhận với 2 rồi so sánh phần bù tới 1.

Kết quả:P<Q.

tk mk nha các bn.

a: Gọi d=ƯCLN(6n+5;2n+1)

=>6n+5-3(2n+1) chia hết cho d

=>2 chia hết cho d

mà 2n+1 lẻ

nên d=1

=>ĐPCM

b: Gọi d=ƯCLN(14n+3;21n+4)

=>42n+9-42n-8 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

d: Gọi d=ƯCLN(3n+7;n+2)

=>3n+7 chia hết cho d và n+2 chia hết cho d

=>3n+7-3n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

29 tháng 10 2017

2n+ 18 \(⋮\) 2n+5

=> \(\left(2n+18\right)-\left(2n+5\right)⋮\left(2n+5\right)\)

=> \(\left(2n+18-2n-5\right)⋮\left(2n+5\right)\)

=> \(13⋮\left(2n+5\right)\)

=> \(\left(2n+5\right)\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

ta có bảng sau

2n+5 -13 -1 1 13
2n

-18 -6 -4 8
n -9 -3 -2 4

vây n \(\in\left\{-9;-3;-2;4\right\}\)

1 tháng 6 2021

bạn có cần gấp gáp k?

1 tháng 6 2021

n/n+1 .là phân số tối giản