Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(đkxđ\) : \(x\ne0;x\ne1\)
b/
M = \(\frac{\left(\sqrt{x}+1\right)^2-4\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}}\)
\(=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}}\)
\(=\frac{\left(x-2\sqrt{x}+1\right).\sqrt{x}-\left(x+\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}+x-x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2\sqrt{x}-2x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=-2\)
chúc bn học tốt
ĐKXĐ:\(x>0,x\ne4\)
\(M=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2}{\sqrt{x}}\right)\)
\(M=\left(\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(M=\dfrac{4\sqrt{x}}{\left(2-\sqrt{x}\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(M=\dfrac{4x}{\sqrt{x}-3}\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{2}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\left(\frac{\sqrt{2\text{x}}+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\frac{\sqrt{2\text{x}}+x}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\frac{\sqrt{2\text{x}}+x}{\sqrt{2}+2}.\frac{\sqrt{x}-2}{\sqrt{4\text{x}}}\)
\(=\frac{x\sqrt{2}-2\sqrt{2\text{x}}+x\sqrt{x}-2\text{x}}{2\sqrt{2\text{x}}+4\sqrt{x}}\)
tick cho mình nha
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\\x\ne\frac{9}{4}\end{matrix}\right.\)
Ta có: \(Q=\frac{\sqrt{x}+2}{-\sqrt{x}+2}+\frac{3\sqrt{x}-4}{2\sqrt{x}-3}+\frac{-7\sqrt{x}+10}{-2x+7\sqrt{x}-6}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(2\sqrt{x}-3\right)}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}+\frac{\left(3\sqrt{x}-4\right)\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}+\frac{-7\sqrt{x}+10}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}\)
\(=\frac{2x+\sqrt{x}-6-3x+10\sqrt{x}-8-7\sqrt{x}+10}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}\)
\(=\frac{-x+4\sqrt{x}-4}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}\)
\(=\frac{-\left(2-\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}-2}{2\sqrt{x}-3}\)
b) Để Q<-4 thì Q+4<0
\(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}-3}+\frac{4\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
\(\Leftrightarrow\frac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
Trường hợp 1: \(\left\{{}\begin{matrix}9\sqrt{x}-14>0\\2\sqrt{x}-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}>14\\2\sqrt{x}< 3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>\frac{14}{9}\\\sqrt{x}< \frac{3}{2}\end{matrix}\right.\)
⇔Loại vì \(\frac{14}{9}>\frac{3}{2}\)
Trường hợp 2: \(\left\{{}\begin{matrix}9\sqrt{x}-14< 0\\2\sqrt{x}-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}< 14\\2\sqrt{x}>3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< \frac{14}{9}\\\sqrt{x}>\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< \frac{196}{81}\\x>\frac{9}{4}\end{matrix}\right.\Leftrightarrow\frac{9}{4}< x< \frac{196}{81}\)
Kết hợp ĐKXĐ, ta được:
\(\frac{9}{4}< x< \frac{196}{81}\)
Vậy: Để Q<-4 thì \(\frac{9}{4}< x< \frac{196}{81}\)
a) ĐKXĐ : \(x>0;x\ne1\)
b) \(M=\frac{\left(\sqrt{x}+1\right)^2-4\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}}\)
\(M=\frac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(M=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}-\left(\sqrt{x}+1\right)\)
\(M=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}-\sqrt{x}-1\)
\(M=\sqrt{x}-1-\sqrt{x}-1\)
\(M=-2\)( đpcm )
1) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\frac{4}{9}\end{matrix}\right.\)
Ta có: \(Q=\frac{-5\sqrt{x}+4}{3\sqrt{x}-2}+\frac{6\sqrt{x}+4}{2\sqrt{x}+3}+\frac{29\sqrt{x}-28}{3\left(6x+5\sqrt{x}-6\right)}\)
\(=\frac{3\left(-5\sqrt{x}+4\right)\left(2\sqrt{x}+3\right)}{3\left(3\sqrt{x}-2\right)\left(2\sqrt{x}+3\right)}+\frac{3\left(6\sqrt{x}+4\right)\left(3\sqrt{x}-2\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}+\frac{29\sqrt{x}-28}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)
\(=\frac{3\left(-10x-7\sqrt{x}+12\right)}{3\left(3\sqrt{x}-2\right)\left(2\sqrt{x}+3\right)}+\frac{3\left(18x-8\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}+\frac{29\sqrt{x}-28}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)
\(=\frac{-30x-21\sqrt{x}+36+54x-24+29\sqrt{x}-28}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)
\(=\frac{24x+8\sqrt{x}-16}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)
\(=\frac{8\left(3x+3\sqrt{x}-2\sqrt{x}-2\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)
\(=\frac{8\left(\sqrt{x}+1\right)\left(3\sqrt{x}-2\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)
\(=\frac{8\sqrt{x}+8}{6\sqrt{x}+9}\)
2) Để \(Q>\frac{8}{3}\) thì \(Q-\frac{8}{3}>0\)
\(\Leftrightarrow\frac{8\sqrt{x}+8}{6\sqrt{x}+9}-\frac{8}{3}>0\)
\(\Leftrightarrow\frac{24\sqrt{x}+24}{3\left(6\sqrt{x}+9\right)}-\frac{8\left(6\sqrt{x}+9\right)}{3\left(6\sqrt{x}+9\right)}>0\)
\(\Leftrightarrow\frac{24\sqrt{x}+24-48\sqrt{x}-72}{9\left(2\sqrt{x}+3\right)}>0\)
mà \(9\left(2\sqrt{x}+3\right)>0\forall x\) thỏa mãn ĐKXĐ
nên \(-24\sqrt{x}-48>0\)
\(\Leftrightarrow-24\left(\sqrt{x}+2\right)>0\)
\(\Leftrightarrow\sqrt{x}+2< 0\)(Vô lý)
Vậy: Không có giá trị nào của x thỏa mãn \(Q>\frac{8}{3}\)
1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)
không thể cm được đâu bn --> xem lại đề
2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x=1\) vậy \(x=1\)
3) +) tương tự 2)
4) a) +) điều kiện xác định : \(x>0;x\ne4\)
ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)
\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)
c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)
tương tự 2 )
\(\)
ĐKXĐ
\(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\)
\(\Rightarrow x\in\left\{-4;-3;-2;-1;0;1;2\right\}\)
thank