Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk \(x\ge0\) và \(x\ne\pm4\)
\(M=\frac{x+2\sqrt{2}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{x-4}{\sqrt{4x}}=\frac{2x\left(x-4\right)}{2\sqrt{2}\left(x-4\right)}=\frac{\sqrt{2}x}{2}\)
c) Để \(M>3\Leftrightarrow\frac{\sqrt{2}x}{2}>3\Leftrightarrow\frac{\sqrt{2}x-6}{2}>0\Leftrightarrow\sqrt{2}x>6\Leftrightarrow x>\frac{6}{\sqrt{2}}\)
a) \(ĐKXĐ:x\ge0;x\ne3\)
b) \(A=\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right)\)
\(\Leftrightarrow A=\left(\frac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}\right)\left(2\sqrt{x}+2\sqrt{3}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}-\sqrt{3}}{\sqrt{x}+\sqrt{3}}\right).2\left(\sqrt{x}+\sqrt{3}\right)\)
\(\Leftrightarrow A=2\left(\sqrt{x}-\sqrt{3}\right)\)
\(\Leftrightarrow A=2\sqrt{x}-2\sqrt{3}\)
c) Thay \(x=4-2\sqrt{3}\)vào A, ta có :
\(A=2\sqrt{4-2\sqrt{3}}-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{\left(1-\sqrt{3}\right)^2}-2\sqrt{3}\)
\(\Leftrightarrow A=2\left(\sqrt{3}-1\right)-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{3}-2-2\sqrt{3}\)
\(\Leftrightarrow A=-2\)
a/ \(đkxđ\) : \(x\ne0;x\ne1\)
b/
M = \(\frac{\left(\sqrt{x}+1\right)^2-4\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}}\)
\(=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}}\)
\(=\frac{\left(x-2\sqrt{x}+1\right).\sqrt{x}-\left(x+\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}+x-x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2\sqrt{x}-2x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=-2\)
chúc bn học tốt
a ) \(ĐKXĐ:x\ge0;x\ne1\)
= \(\frac{x+1+\sqrt{x}}{x+1}:\left[\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]-1\)
\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)
\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)
\(=\frac{\left(x+1+\sqrt{x}\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)
\(=\frac{x+1+\sqrt{x}}{\sqrt{x}-1}-1=\frac{x+2}{\sqrt{x}-1}\)
B ) Ta có :
\(Q=P-\sqrt{x}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}-\sqrt{x}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)
Đế Q nhận giá trị nguyên thì \(1+\frac{3}{\sqrt{x}-1}\in Z\)
\(\Leftrightarrow\frac{3}{\sqrt{x}-1}\in Z\left(vì1\in Z\right)\)
\(\Leftrightarrow\sqrt{x}-1\inƯ\left(3\right)\)
Ta có bảng sau :
\(\sqrt{x}-1\) | 3 | -3 | 1 | -1 |
\(\sqrt{x}\) | 4 | -2 | 2 | 0 |
\(x\) | 16(t/m) | 4(t/m) | 0(t/m) |
Vậy để biểu thức \(Q=P-\sqrt{x}\) nhận giá trị nguyên thì \(x\in\left\{16;4;0\right\}\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{2}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\left(\frac{\sqrt{2\text{x}}+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\frac{\sqrt{2\text{x}}+x}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\frac{\sqrt{2\text{x}}+x}{\sqrt{2}+2}.\frac{\sqrt{x}-2}{\sqrt{4\text{x}}}\)
\(=\frac{x\sqrt{2}-2\sqrt{2\text{x}}+x\sqrt{x}-2\text{x}}{2\sqrt{2\text{x}}+4\sqrt{x}}\)
tick cho mình nha