Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu là kết quả của việc chọn ngẫu nhiên 2 thẻ trong số 6 thẻ.
a. Gọi A: “ Hai điểm là đầu mút của cạnh của lục giác”
⇒ n(A) = 6 (Lục giác có 6 cạnh)
b. Gọi B: “ Hai điểm là đầu mút của đường chéo”
⇒ B = A− (Vì một đoạn thẳng chỉ có thể là một cạnh hoặc một đường chéo)
⇒ P(B) = 1 – P(A) = 1 – 0,4 = 0,6
c. Gọi C: “ Hai điểm là đầu mút của đường chéo nối hai đỉnh đối diện”
⇒ n(C) = 3
Giải:
Vì lấy 2 điểm nên:
\(C^2_6=15\rightarrow n\left(\Omega\right)=15\)
Gọi:
\(A\) là biến cố "2 thẻ lấy ra là 2 cạnh của lục giác"
\(B\) là biến cố "2 thẻ lấy ra là đường chéo của lục giác"
\(C\) là biến cố "2 thẻ lấy ra là đường chéo của 2 cạnh đối diện của lục giác"
a) \(n\left(A\right)=6\Rightarrow P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{6}{15}=\dfrac{2}{5}\)
b) \(B=\overline{A}\Rightarrow P\left(B\right)=1-P\left(A\right)=1-\dfrac{2}{5}=\dfrac{3}{5}\)
c) \(n\left(C\right)=6\Rightarrow P\left(C\right)=\dfrac{n\left(C\right)}{n\left(\Omega\right)}=\dfrac{3}{15}=\dfrac{1}{5}\)
Đáp án C
Chọn ngẫu nhiên 4 đỉnh của đa giác có C 20 4 = 4845 c á c h
Đa giác đều 20 đỉnh có 10 đường chéo đi qua tâm đường tròn ngoại tiếp đa giác
Cứ 2 đường chéo bất kì là 2 đường chéo cuiả 1 hình chữ nhật
Do đó số hình chứ nhật là C 20 2 = 45
Vậy xác suất cần tìm là
P = 45 4845 = 3 323
Chọn B
Gọi A là biến cố lấy ra hai đường chéo có giao điểm nằm trong đường tròn (C)
Số đường chéo của đa giác đều 20 đỉnh là C 20 2 - 20 = 170. Khi đó, ta có số cách lấy ra 2 đường chéo trong số 170 đường là
Để có hai đường chéo cắt nhau tại một điểm nằm trong đường tròn (C) thì hai đường chéo đó phải là đường chéo của tứ giác có 4 đỉnh là đỉnh của đa giác đều 20 đỉnh. Do đó, số cách lấy ra 2 đường chéo có giao điểm nằm trong đường tròn tâm O là C 20 4 = 4845
Vậy xác suất lấy ra hai đường chéo có giao điểm nằm trong đường tròn (C) là
Chọn D
Số phần tử của (S) là số đường thẳng tạo nên từ 30 điểm đã cho là C 30 2 = 435
Số cách chọn 2 đường thẳng bất kỳ thuộc tập (S) là số phần tử không gian mẫu n ( Ω ) = C 435 2 = 94395
Giao điểm của hai đường thẳng nằm trong đường tròn tức là cũng nằm ở miền trong đa giác 30 đỉnh, khi đó giao điểm 2 đường thẳng cũng là giao điểm hai đường chéo của tứ giác có 4 đỉnh thuộc 30 đỉnh đa giác đã cho, vậy số giao điểm nằm trong đa giác chính là C 30 4 = 27405
Vậy xác suất cần tìm là
Đáp án A.
Có 10 đường kính của đường tròn được nối bởi 2 đỉnh của đa giác đều
Một hình chữ nhật có 4 đỉnh là đỉnh của đa giác được tạo bởi 2 đường kính nói trên
Số cách chọn 4 đỉnh của đa giác là C 20 4
Số cách chọn 4 đỉnh của hình chữ nhật là C 20 2
Vậy xác suất cần tính là P = C 10 2 C 20 4 = 3 323
Đáp án A
Ta có số cách chọn 4 đỉnh:
Hình hai mươi cạnh đều có 10 đường chéo đi qua tâm và chúng đều bằng nhau
Cứ hai đường chéo gộp lại ta được hai đường chéo của một hình chữ nhật
Vậy có tất cả hình chữ nhật thỏa mãn 4 đỉnh là 4 trong 20 đỉnh của hình cho
Kết luận:
Mỗi giao điểmcủa hai đường chéoứng với một và chỉ một tập hợp gồm 4 điểmtừ tập hợp 7 đỉnh của đa giác. Vậy có giao điểm.
Chọn B
Gọi A là biến cố lấy ra hai đường chéo có giao điểm nằm trong đường tròn (C)
Số đường chéo của đa giác đều 20 đỉnh là C 20 2 - 20 = 170. Khi đó, ta có số cách lấy ra 2 đường chéo trong số 170 đường là
Để có hai đường chéo cắt nhau tại một điểm nằm trong đường tròn (C) thì hai đường chéo đó phải là đường chéo của tứ giác có 4 đỉnh là đỉnh của đa giác đều 20 đỉnh. Do đó, số cách lấy ra 2 đường chéo có giao điểm nằm trong đường tròn tâm O là C 20 4 = 4845
Vậy xác suất lấy ra hai đường chéo có giao điểm nằm trong đường tròn (C) là