Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Gọi A là biến cố lấy ra hai đường chéo có giao điểm nằm trong đường tròn (C)
Số đường chéo của đa giác đều 20 đỉnh là C 20 2 - 20 = 170. Khi đó, ta có số cách lấy ra 2 đường chéo trong số 170 đường là
Để có hai đường chéo cắt nhau tại một điểm nằm trong đường tròn (C) thì hai đường chéo đó phải là đường chéo của tứ giác có 4 đỉnh là đỉnh của đa giác đều 20 đỉnh. Do đó, số cách lấy ra 2 đường chéo có giao điểm nằm trong đường tròn tâm O là C 20 4 = 4845
Vậy xác suất lấy ra hai đường chéo có giao điểm nằm trong đường tròn (C) là
Chọn B
Các số tự nhiên của tập X có dạng a b c d e ¯ , suy ra tập X có 9. 10 4 số. Lấy từ tập X ngẫu nhiên hai số có C 90000 2 số.
Vì có 25 số.
Suy ra số tự nhiên có năm chữ số chia hết cho 4 là 9.10.10.25 = 22500 số.
Số tự nhiên có năm chữ số không chia hết cho 4 là 9.10.10.75 = 67500 số.
Vậy xác suất để ít nhất một số chia hết cho 4 là:
Đáp án C
Gọi A là biến cố: “Chọn được tam giác vuông”
Đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm O có 2n đường chéo qua tâm O .
Mỗi tam giác vuông tạo bởi hai đỉnh nằm trên cùng một đường chéo qua tâm O và một đỉnh trong 4 n - 2 đỉnh còn lại.
Suy ra số tam giác vuông được tạo thành là C 2 n 1 . C 4 n - 2 1 .
Đáp án A
Số các tam giác bất kỳ là n ( ω ) = C 18 3
Số các tam giác đều là 18 3 = 6
Có 18 các chọn một đỉnh của đa giác, mỗi đỉnh có 8 các chọn 2 đỉnh còn lại để được một tam giác đều
Số các tam giác cân là: 18.8 = 144
Số các tam giác cân không đều là: 144 - 6 = 138 => n(A) = 138
Xác suất => P(A) = 138 C 18 3 = 23 136
Chọn B
Gọi A là biến cố lấy ra hai đường chéo có giao điểm nằm trong đường tròn (C)
Số đường chéo của đa giác đều 20 đỉnh là C 20 2 - 20 = 170. Khi đó, ta có số cách lấy ra 2 đường chéo trong số 170 đường là
Để có hai đường chéo cắt nhau tại một điểm nằm trong đường tròn (C) thì hai đường chéo đó phải là đường chéo của tứ giác có 4 đỉnh là đỉnh của đa giác đều 20 đỉnh. Do đó, số cách lấy ra 2 đường chéo có giao điểm nằm trong đường tròn tâm O là C 20 4 = 4845
Vậy xác suất lấy ra hai đường chéo có giao điểm nằm trong đường tròn (C) là
Chọn 3 đỉnh bất kỳ: \(n\left(\Omega\right)=C^3_n\left(cach\right)\)
Gọi 3 đỉnh đó là A,B,C tạo thành tam giác tù =>A >90 độ => B,C<90 độ
Chọn một đỉnh là B (hoặc C): \(C^1_n=n\left(cach\right)\)
Kẻ đường kính ua B chia đường tròn thành 2 nữa, mỗi nữa sẽ có \(\dfrac{n}{2}-1\) (đỉnh của đa giác đều)
Để tạo thành tam giác tù thì A và C (hoặc A và B) phải ở cùng một nữa
Số cách chọn A và C (A và B): \(C^2_{\dfrac{n}{2}-1}+C^2_{\dfrac{n}{2}-1}\left(cach\right)\)
\(\Rightarrow n\left(A\right)=\dfrac{1}{2}.n\left(C^2_{\dfrac{n}{2}-1}+C^2_{\dfrac{n}{2}-1}\right)\left(tam-giac-tu\right)\)
\(\Rightarrow p\left(A\right)=\dfrac{n\left(A\right)}{n(\Omega)}=...\)
Làm bừa xem đúng ko :D
SỐ tam giác tạo được từ 3 đỉnh là \(C^3_{12}\)
Số tam giác có 3 đỉnh là 3 đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn
=>Có 12 tam giác
Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác
=>CÓ 8*12=96 tam giác
=>\(P=\dfrac{C^3_{12}-12-12\cdot8}{C^3_{12}}\)
Đáp án C
Chọn ngẫu nhiên 4 đỉnh của đa giác có C 20 4 = 4845 c á c h
Đa giác đều 20 đỉnh có 10 đường chéo đi qua tâm đường tròn ngoại tiếp đa giác
Cứ 2 đường chéo bất kì là 2 đường chéo cuiả 1 hình chữ nhật
Do đó số hình chứ nhật là C 20 2 = 45
Vậy xác suất cần tìm là
P = 45 4845 = 3 323
Chọn D
Số phần tử của (S) là số đường thẳng tạo nên từ 30 điểm đã cho là C 30 2 = 435
Số cách chọn 2 đường thẳng bất kỳ thuộc tập (S) là số phần tử không gian mẫu n ( Ω ) = C 435 2 = 94395
Giao điểm của hai đường thẳng nằm trong đường tròn tức là cũng nằm ở miền trong đa giác 30 đỉnh, khi đó giao điểm 2 đường thẳng cũng là giao điểm hai đường chéo của tứ giác có 4 đỉnh thuộc 30 đỉnh đa giác đã cho, vậy số giao điểm nằm trong đa giác chính là C 30 4 = 27405
Vậy xác suất cần tìm là