K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

số đó có  dạng abc 

 {0,1,2,3,4,5,6,7,8,9}

 vì là số chẳn nên c có 5 cách chọn {0,2,4,6,8}

 a có 8 các chọn vì phải bỏ số 0 và c

b có 8 cách chọn vì phải bỏ đi a và c

 vậy có 5*8*8=320 số 

 

24 tháng 5 2018

Sai rồi!!!

1 tháng 1 2021

Các chữ số được đặt trong các ô trống.  

 .  .  .  . 

TH1: Số cần lập có chữ số 0:

Đưa 0 vào 3 cách

Đưa 1 vào 3 cách

Đưa 3 vào 2 cách

Lấy 1 số bất kì  ô còn lại : 7 cách

=> TH1 có 126 số

TH2: Số cần lập không có chữ số 0:

Đưa 1 vào 4 cách

Đưa 3 vào 3 cách

Lấy 2 số bất kì đưa vào 2  ô còn lại : \(A^2_7\) cách

=> TH2 có 504 số

Vậy lập được tất cả 504 + 126 = 630 số

1 tháng 11 2021
1234567891011121314
2 tháng 6 2022

Gọi \(\overline{abc}\) là một số thỏa mãn yêu cầu bài toán

+) Nếu b = 0 thì a,c ∈ \(\left\{1;2;3;4;5;6;7;8;9\right\}\) ⇒ Chọn a,c có \(A_9^2\) cách

+) Nếu b = 1 thì a,c ∈ \(\left\{2;3;4;5;6;7;8;9\right\}\) ⇒ Chọn a,c có \(A_8^2\) cách

+) Nếu b = 2 thì a,c ∈ \(\left\{3;4;5;6;7;8;9\right\}\) ⇒ Chọn a,c có \(A_7^2\) cách

+) Nếu b = 3 thì a,c ∈ \(\left\{4;5;6;7;8;9\right\}\) ⇒ Chọn a,c có \(A_7^2\) cách

..............

+) Nếu b = 7 thì a,c ∈ \(\left\{8;9\right\}\) ⇒ Chọn a,c có \(A_2^2\) cách

* Nếu b = 8 thì a = c = 9 : không thỏa mãn yêu cầu bài toán

* Nếu b = 9 thì không có a,c

⇒ Số các số tự nhiên có 3 chữ số đôi một khác nhau sao cho chữ số hàng chục nhỏ hơn hai chữ số còn lại là

\(A_9^2\) + \(A_8^2\) + \(A_7^2\) + ...  + \(A_2^2\)

\(2.C_{10}^3\) = 240

14 tháng 1 2022

Gọi abc là stn có ba chữ số khác nhau cần tìm

TH1: c = {0} -> 1cc                                                       TH2: c = {2;4;6} -> 3cc

a \ {c} -> 6cc                                                                    a \ {0;c) -> 5cc

b \ {a;c} -> 5cc                                                                 b \ {a;c} -> 5cc

<=>(6*5)+(3*5*5)=105 số

20 tháng 12 2020

Gọi \(M=\overline{abc} (a \ne b \ne c) \)

TH1: \(c=0 → c\) có 1 cách chọn.

\(a\) có 5 cách chọn.

\(b\) có 4 cách chọn.

\(\Rightarrow\) Có: \(1.5.4=20\) cách.

TH2: \(c \ne 0→ c\) có \(2\) cách chọn.

\(a\) có \(4\) cách chọn.

\(b\) có \(4\) cách chọn.

\(Rightarrow\) Có : \(2.4.4=32\) cách.

\(Rightarrow\) Có tất cả : \(20+32=52\) cách.

Vậy có thể lập được 52 số thỏa mãn yêu cầu.

20 tháng 12 2020

Cảm ơn bạn

20 tháng 8 2021

a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0

Chọn 3 chữ số lẻ có C35 cách

Chọn 3 chữ số chẵn có C35 cách

Sắp xếp 6 chữ số này có 6! cách

Vậy có C35 . C35 . 6! số

TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0

Chọn 3 chữ số lẻ có C35 cách

Chọn 2 chữ số chẵn có C24 cách

Sắp xếp 5 chữ số có 5! cách

Vậy có C35 . C24 . 5! số

Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ