Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a^3-1}{\left(a+1\right)^3+1}=\frac{\left(a-1\right)\left(a^2+a+1\right)}{\left(a+1+1\right)\left(\left(a+1\right)^2-\left(a+1\right)+1\right)}=\frac{a-1}{a+2}\)
\(M=\frac{100^3-1}{2^3+1}.\frac{2^3-1}{3^3+1}.\frac{3^3-1}{4^3+1}...\frac{99^3-1}{100^3+1}\)
\(M=\frac{999999}{9}.\frac{1}{4}.\frac{2}{5}.\frac{3}{6}...\frac{98}{101}=\frac{999999.1.2.3}{9.99.100.101}\)
\(M=\frac{10101.2}{3.100.101}=\frac{20202}{30300}>\frac{20200}{30300}=\frac{2}{3}\)
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}+\frac{\sqrt{n+1}}{n+1}\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\frac{\sqrt{1}}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{99}}{99}-\frac{\sqrt{100}}{100}\)
\(=1-\frac{\sqrt{100}}{100}=\frac{9}{10}< 1\)
Ta có:
\(\frac{1}{n\sqrt{\left(n+1\right)}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{\left(n+1\right)}\right)}\)
\(=\frac{1}{\sqrt{n\left(n+1\right)}}.\left(\sqrt{n+1}-\sqrt{n}\right)=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vào ta được
\(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{99\sqrt{100}+100\sqrt{99}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=1-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
+ \(2\cdot\frac{1}{\sqrt{n}+\sqrt{n+1}}< \frac{2}{\sqrt{n}+\sqrt{n}}< 2\cdot\frac{1}{\sqrt{n-1}+\sqrt{n}}\) \(\Rightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
\(\Rightarrow A>2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{101}-\sqrt{100}\right)\)
\(\Rightarrow A>2\left(\sqrt{101}-\sqrt{2}\right)>17\)
+ \(A< 2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\Rightarrow A< 2\left(\sqrt{100}-1\right)=18\)
\(\frac{m}{n}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{1331}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1330}\right)\)
\(\frac{m}{n}=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{1330}+\frac{1}{1331}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1330}\right)\)
\(\frac{m}{n}=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{1330}+\frac{1}{1331}\right)-\left(1+\frac{1}{2}+...+\frac{1}{665}\right)\)
\(\frac{m}{n}=\frac{1}{666}+\frac{1}{667}+...+\frac{1}{1330}+\frac{1}{1331}\)
\(\frac{m}{n}=\left(\frac{1}{666}+\frac{1}{1331}\right)+\left(\frac{1}{667}+\frac{1}{1330}\right)+...+\left(\frac{1}{998}+\frac{1}{999}\right)\)
\(\frac{m}{n}=\frac{1997}{666.1331}+\frac{1997}{667.1330}+...+\frac{1997}{998.999}=\frac{1997k_1+1997.k_2+...+1997.k_{333}}{666.667...1331}\)
\(\frac{m}{n}=\frac{1997.\left(k_1+k_2+...+k_{333}\right)}{666.667...1330.1331}\) trong đó: k1;...; k333 là các thừa số phụ của các phân số trong tổng
Nhận xét: phân số trên có tử chia hết cho 1997 là số nguyên tố; mẫu số không chia hết cho thừa số nguyên tố 1997 nên khi rút gọn tử vẫn chia hết cho 1997
=> m chia hết cho 1997