K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

a) M = 1+ 3 + 32 + ... + 349

M = (1 + 3 + 32) + ... + (347 + 348 + 349)

M = 1 . (1 + 3 + 32) + ... + 347 . (1 + 3 + 32)

M = 1 . 13 + ... + 347 . 13

M = 13 . (1 + ... + 347)

Vì 13 \(⋮\) 13 nên suy ra 13 . (1 + ... + 347) \(⋮\) 13

Vậy M \(⋮\) 13.

b) M = 1 + 3 + 32 + ... + 349

=> 3M = 3 + 32 + 33 + ... + 350

3M - M = (3 + 32 + 33 + ... + 350) - (1 + 3 + 32 + ... + 349)

=> 2M = 350 - 1

=> M = \(\frac{3^{50}-1}{2}\)

Vậy M = \(\frac{3^{50}-1}{2}\)

23 tháng 11 2016

\(M=1+3+3^2+3^3+....+3^{47}+3^{48}+3^{49}\)

\(M=\left(1+3+3^2\right)+...+\left(3^{47}+3^{48}+3^{49}\right)\)

\(M=13\left(1+....+17\right)⋮13\left(\text{đ}pcm\right)\)

 

a: \(M=3\left(1+3^2+3^4\right)+...+3^{95}\left(1+3^2+3^4\right)\)

\(=273\left(1+...+3^{95}\right)⋮13\)

b: \(9M=3^3+3^5+...+3^{101}\)

\(\Leftrightarrow8M=3^{101}-3\)

\(\Leftrightarrow M=\dfrac{3^{101}-3}{8}\)

\(2M+3=\dfrac{3^{101}-3}{4}+3=\dfrac{3^{101}-3+12}{4}=\dfrac{3^{101}+9}{4}\)

6 tháng 1 2021

giúp e giải vs e đang cần gấp

6 tháng 1 2021

a, \(A=3+3^2+...+3^{120}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+3^5+...+3^{119}\right)\)

\(\Rightarrow A⋮4\)

\(A=3+3^2+...+3^{120}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{118}\right)\)

\(\Rightarrow A⋮13\)

b, \(3A=3^2+3^3+...+3^{121}\)

\(\Rightarrow2A=3^{121}-3=3\left(3^{120}-1\right)\)

Vì \(3^{120}=3^{4.30}\) có chữ số tận cùng là 1 suy ra \(3^{120}-1\) có chữ số tận cùng là 0

\(\Rightarrow A=\dfrac{3\left(3^{120}-1\right)}{2}\) có chữ số tận cùng là 0

c, Đề là \(2A+3\) thì có vẻ hợp lí hơn

\(2A+3=3^{121}-3+3=3^{121}\) là lũy thừa của 3

24 tháng 7 2021

o biết
 

17 tháng 12 2017

a)

\(A=3+3^2+3^3+3^4+...+3^{120}\)

\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow2A=3^{121}-3\)

\(\Rightarrow A=\frac{3^{121}-3}{2}\)

b)

\(2A+3\)

\(=3^{121}-3+3\)

\(=3^{121}\)

Mà 3121 là lũy thừa của 3

\(\Rightarrow\) 2A + 3 là lũy thừa của 3.

9 tháng 12 2017

a, - A = 31 + 32 + 33 + ... + 3120

= (31+32) + (33+34) + ... + (3119+3120)

= (3+32) + 32(3+32) + ... + 3118(3+32)

= 12 + 32.12 + ... + 3118.12

= 12(1+32+34+...+3118) ⋮ 12 ⋮ 4

- A = 31 + 32 + 33 + ... + 3120

= (31+32+33) + (34+35+36) + ...+ (3118+3119+3120)

= (31+32+33) + 33(31+32+33) + ... + 3117(31+32+33)

= 39 + 33.39 + ... + 3117.39

= 39(1+33+36+...+3117) ⋮ 39 ⋮ 13

- Vì A chia hết cho 13 và 4. Mà ƯCLN(4,13) = 1 nên A chia hết cho (4.13) = 82

b,

Nhận thấy:

34n+1 = ...3 (theo quy tắc về chữ số tận cùng của một luỹ thừa, lên Youtube coi video của cô Huyền OLM)

=> 34n+2 = ...3.3 = ...9

34n+3 = ...9.3 = ...27 = ...7

34n = ...3: 3 = ...1

Mà 120: 4 = 30 (4 là số số luỹ thừa đc lặp lại)

=> A = (...3+...9+...7+...1).30 = ...0

Vậy CSTC của A là 0

c,

A = 31 + 32 + 33 + ... + 3120

=> 3A = 32 + 33 + 34 + ... + 3121

=> 3A - A = (32 + 33 + 34 + ... + 3121) - (31 + 32 + 33 + ... + 3120)

=> 2A = 3121 - 3

=> 2A + 3 = 3121

Vậy 2A + 3 là luỹ thừa của 3

P/s: Không phải 2A - 3