K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M=3\left(1+3^2+3^4\right)+...+3^{95}\left(1+3^2+3^4\right)\)

\(=273\left(1+...+3^{95}\right)⋮13\)

b: \(9M=3^3+3^5+...+3^{101}\)

\(\Leftrightarrow8M=3^{101}-3\)

\(\Leftrightarrow M=\dfrac{3^{101}-3}{8}\)

\(2M+3=\dfrac{3^{101}-3}{4}+3=\dfrac{3^{101}-3+12}{4}=\dfrac{3^{101}+9}{4}\)

23 tháng 11 2016

\(M=1+3+3^2+3^3+....+3^{47}+3^{48}+3^{49}\)

\(M=\left(1+3+3^2\right)+...+\left(3^{47}+3^{48}+3^{49}\right)\)

\(M=13\left(1+....+17\right)⋮13\left(\text{đ}pcm\right)\)

 

Giải:

a) M = 1+ 3 + 32 + ... + 349

M = (1 + 3 + 32) + ... + (347 + 348 + 349)

M = 1 . (1 + 3 + 32) + ... + 347 . (1 + 3 + 32)

M = 1 . 13 + ... + 347 . 13

M = 13 . (1 + ... + 347)

Vì 13 \(⋮\) 13 nên suy ra 13 . (1 + ... + 347) \(⋮\) 13

Vậy M \(⋮\) 13.

b) M = 1 + 3 + 32 + ... + 349

=> 3M = 3 + 32 + 33 + ... + 350

3M - M = (3 + 32 + 33 + ... + 350) - (1 + 3 + 32 + ... + 349)

=> 2M = 350 - 1

=> M = \(\frac{3^{50}-1}{2}\)

Vậy M = \(\frac{3^{50}-1}{2}\)

24 tháng 3 2017

bọn học ngu

24 tháng 3 2017

a)Số các số có ở M là:

(100-1):1+1=100(số)

Ta có: 100:4=25

ta chia dãy só trên thành 25 nhóm, mỗi nhóm gồm 4 số như sau:

M=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+(3^97+3^98+3^99+3^100)

   = 3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+...+3^97(1+3+3^2+3^3)

   = 3 x 40  +   3^5 x 40    + ...+    3^97 x 40

   =   40 x ( 3+3^5+...+3^97)

Vì 40 chia hết cho 5 nên 40 x (3+3^5+.....+3^97)

=> M chia hết cho 5

Ta có: 100 : 2 = 50

Ta chia dãy số trên thành 50 nhóm mỗi nhóm gồm 2 số như sau :

M = ( 3 + 3^2 )+( 3^3 + 3^4 )+....+( 3^99 + 3^100 )

    = 3(1+3)+3^3(1+3)+...+3^99(1+3)

    =3x4+3^3x4+...+3^99x4

    = 4 x (3+3^3+...+3^99)

=> M chia hết cho 4

Mà M chia hết cho 3

Từ hai diều trên => M chia hết cho 12 

Vậy M chia hết cho 5 và 12.

b)M=3+3^2+3^3+...+3^100

   3M = 3 x ( 3+3^2+3^3+...+3^100)

   3M=3^2+3^3+3^4+...+3^101

3M - M =(3^2+3^3+3^4+...+3^101)-(3+3^2+3^3+3^4+...+3^100)

   2M = 3^101 - 3

=>2M+3 = 3^101 - 3 + 3 = 3^101

=> n = 101

Vậy n=101

6 tháng 1 2021

giúp e giải vs e đang cần gấp

6 tháng 1 2021

a, \(A=3+3^2+...+3^{120}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+3^5+...+3^{119}\right)\)

\(\Rightarrow A⋮4\)

\(A=3+3^2+...+3^{120}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{118}\right)\)

\(\Rightarrow A⋮13\)

b, \(3A=3^2+3^3+...+3^{121}\)

\(\Rightarrow2A=3^{121}-3=3\left(3^{120}-1\right)\)

Vì \(3^{120}=3^{4.30}\) có chữ số tận cùng là 1 suy ra \(3^{120}-1\) có chữ số tận cùng là 0

\(\Rightarrow A=\dfrac{3\left(3^{120}-1\right)}{2}\) có chữ số tận cùng là 0

c, Đề là \(2A+3\) thì có vẻ hợp lí hơn

\(2A+3=3^{121}-3+3=3^{121}\) là lũy thừa của 3