K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2017

Lời giải:

Từ $A$ kẻ $AH$ vuông góc với $BC$

Khi đó:

\(60^0=\angle ((A'BC), (ABC))=\angle (AH, A'H)=\angle AHA'\)

Do hình lăng trụ đã cho là lăng trụ đều nên tam giác $ABC$ là tam giác đều có đường cao $AH$ nên:

\(AH=\sqrt{a^2-(\frac{a}{2})^2}=\frac{\sqrt{3}a}{2}\)

\(\Rightarrow \sqrt{3}=\tan AHA'=\frac{AA'}{AH}\Rightarrow AA'=\frac{3}{2}a\)

\(V_{ABC.A'B'C'}=S_{ABC}.AA'=\frac{AH.BC}{2}.\frac{3}{2}a=\frac{\sqrt{3}a^2}{4}.\frac{3}{2}a=\frac{3\sqrt{3}a^3}{8}\)

NV
5 tháng 1 2022

C là đáp án đúng

20 tháng 10 2021

A B C D A' B' C' D'

\(AA'=\dfrac{2a}{\sqrt{3}}\)

\(V=AA'\cdot S_{ABCD}=\dfrac{16a^3}{\sqrt{3}}\)