K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2015

chỉnh lại câu 1 tí:

1)
    + Xét tứ giác AEFD :  ADF +AEF = 90 +90 = 180
    Suy ra: Tứ giác AEFD nội tiếp được đường tròn 
    Suy ra:  EAF = EDF hay EAF = EDC
    + Xét tgAEF và tg EDC :  AEF = ECD = 90 VÀ EAF = EDC
    Suy ra: tgAEF ~  tgDCE =>  .AE /AF = CD/DE

2.

Tứ giác AEFD nội tiếp được đường tròn 
=>  EAF = EDF mặt khác  EAF = EDC mặt khác  : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG  suy ra tứ giác AEGH nội tiếp được đường tròn =>  HGE = 90 
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.

3.

Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
    + Xét tam giác HGE :   và OH = OE = 1/2. HE => OH = OE = OG.
    + Xét tg OEK và tg OGK : 
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra  tgOEK =tg OGK (c – c – c) =>  KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).

17 tháng 11 2023

a: Sửa đề: AEBF là hình chữ nhật

Xét tứ giác AEBF có

AB cắt EF tại trung điểm của mỗi đường

nên AEBF là hình bình hành

Hình bình hành AEBF có AB=EF

nên AEBF là hình chữ nhật

b: ΔBEH vuông tại E

mà EP là đường trung tuyến

nên EP=PB=PH=HB/2

Xét ΔOBP và ΔOEP có

OB=OE

BP=EP

OP chung

Do đó: ΔOBP=ΔOEP

=>\(\widehat{OEP}=\widehat{OBP}=90^0\)

=>PE là tiếp tuyến của (O)

c: AM\(\perp\)EF

=>\(\widehat{AFE}+\widehat{MAK}=90^0\)

mà \(\widehat{AFE}=\widehat{ABE}\)(AFBE là hình chữ nhật)

nên \(\widehat{MAK}+\widehat{ABE}=90^0\)

mà \(\widehat{ABE}=\widehat{AHK}\left(=90^0-\widehat{BAH}\right)\)

nên \(\widehat{MAK}+\widehat{AHK}=90^0\)

mà \(\widehat{MKA}+\widehat{AHK}=90^0\)(ΔAKH vuông tại A)

nên \(\widehat{MAK}=\widehat{MKA}\)

=>MA=MK

\(\widehat{MAK}+\widehat{MAH}=90^0\)

\(\widehat{MKA}+\widehat{MHA}=90^0\)

mà \(\widehat{MAK}=\widehat{MKA}\)

nên \(\widehat{MAH}=\widehat{MHA}\)

=>MA=MH

mà MA=MK

nên MK=MH

=>M là trung điểm của KH 

20 tháng 9 2021
Tui ko bt lm đâu há há
23 tháng 5 2016

c) *MOHD nội tiếp (cmb) \(\Rightarrow\)^DHB = ^DOM Mà ^DHM +^BHD=180 và ^DOM +^EOD =180 => ^EOD = ^BHD  

  Mặt khác, ^EOD =^BQD (OM // BQ) => ^BHD = ^BQD => BHQD nội tiếp.

=>đpcm

                                                         

23 tháng 5 2016

d) Kéo dài BQ cắt AC tại J

Cm Q là trung điểm BJ (đường trung bình)

Cm \(\frac{EO}{BQ}\)\(=\)\(\frac{OF}{QJ}\)(\(=\)\(\frac{AO}{AQ}\)\(\Rightarrow\)Đpcm