Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: AEBF là hình chữ nhật
Xét tứ giác AEBF có
AB cắt EF tại trung điểm của mỗi đường
nên AEBF là hình bình hành
Hình bình hành AEBF có AB=EF
nên AEBF là hình chữ nhật
b: ΔBEH vuông tại E
mà EP là đường trung tuyến
nên EP=PB=PH=HB/2
Xét ΔOBP và ΔOEP có
OB=OE
BP=EP
OP chung
Do đó: ΔOBP=ΔOEP
=>\(\widehat{OEP}=\widehat{OBP}=90^0\)
=>PE là tiếp tuyến của (O)
c: AM\(\perp\)EF
=>\(\widehat{AFE}+\widehat{MAK}=90^0\)
mà \(\widehat{AFE}=\widehat{ABE}\)(AFBE là hình chữ nhật)
nên \(\widehat{MAK}+\widehat{ABE}=90^0\)
mà \(\widehat{ABE}=\widehat{AHK}\left(=90^0-\widehat{BAH}\right)\)
nên \(\widehat{MAK}+\widehat{AHK}=90^0\)
mà \(\widehat{MKA}+\widehat{AHK}=90^0\)(ΔAKH vuông tại A)
nên \(\widehat{MAK}=\widehat{MKA}\)
=>MA=MK
\(\widehat{MAK}+\widehat{MAH}=90^0\)
\(\widehat{MKA}+\widehat{MHA}=90^0\)
mà \(\widehat{MAK}=\widehat{MKA}\)
nên \(\widehat{MAH}=\widehat{MHA}\)
=>MA=MH
mà MA=MK
nên MK=MH
=>M là trung điểm của KH
c) *MOHD nội tiếp (cmb) \(\Rightarrow\)^DHB = ^DOM Mà ^DHM +^BHD=180 và ^DOM +^EOD =180 => ^EOD = ^BHD
Mặt khác, ^EOD =^BQD (OM // BQ) => ^BHD = ^BQD => BHQD nội tiếp.
=>đpcm
d) Kéo dài BQ cắt AC tại J
Cm Q là trung điểm BJ (đường trung bình)
Cm \(\frac{EO}{BQ}\)\(=\)\(\frac{OF}{QJ}\)(\(=\)\(\frac{AO}{AQ}\)) \(\Rightarrow\)Đpcm
chỉnh lại câu 1 tí:
1)
+ Xét tứ giác AEFD : ADF +AEF = 90 +90 = 180
Suy ra: Tứ giác AEFD nội tiếp được đường tròn
Suy ra: EAF = EDF hay EAF = EDC
+ Xét tgAEF và tg EDC : AEF = ECD = 90 VÀ EAF = EDC
Suy ra: tgAEF ~ tgDCE => .AE /AF = CD/DE
2.
Tứ giác AEFD nội tiếp được đường tròn
=> EAF = EDF mặt khác EAF = EDC mặt khác : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG suy ra tứ giác AEGH nội tiếp được đường tròn => HGE = 90
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.
3.
Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
+ Xét tam giác HGE : và OH = OE = 1/2. HE => OH = OE = OG.
+ Xét tg OEK và tg OGK :
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra tgOEK =tg OGK (c – c – c) => KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).