K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDOM và ΔBON có

góc DOM=góc BON

OD=OB

góc ODM=góc OBN

=>ΔDOM=ΔBON

=>DM=BN

mà DM//BN

nên BMDN là hình bình hành

b: Xét ΔEAM vuông tại A và ΔNBE vuông tại B có

EA=NB

AM=BE

Do đó: ΔEAM=ΔNBE

=>EM=EN

=>ΔEMN cân tại E

mà EO là trung tuyến

nen EO vuông góc với MN

18 tháng 12 2017

a/ Ta có: O là giao điểm 2 đường chéo (gt) => O là trung điểm của  AC và BD => BO = OD

Xét tg DOM và tg BON ta có: BO = OD (cmt); \(\widehat{DOM}=\widehat{BON}\) ( đối đỉnh); \(\widehat{ODM}=\widehat{OBN}\)( so le trong)

=> tg DOM = tg BON (g.c.g) =>> DM = BN

b/  Ta có: AD // BC (vì ABCD là hình vuông) ma M \(\in\)AD va N \(\in\) BC

=> MD // BN mà MD = BN (cmt) =>. Tứ giác BMDN là hình bình hành

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
12 tháng 3 2020

a/Xét tgiac MOD và NOB có : OB=OD, \(\widehat{MOD}=\widehat{NOB},\widehat{MDO}=\widehat{NBO}\left(SLT\right)\)

Suy ra \(\Delta MOD=\Delta NOB\left(g-c-g\right)\left(1\right)\Rightarrow DM=BN\)

b/Từ (1) suy ra OM=ON ta lại có OB=OD nên suy ra BMDN là hbh

c/Xét tgiac AOE và DOM có : AO=OD, AE=MD( MD=BN(1)), \(\widehat{MDO}=\widehat{OAE}=45\)

Suy ra \(\Delta AOE=\Delta DOM\left(c-g-c\right)\left(2\right)\Rightarrow\widehat{MOD}=\widehat{AOE}\)

\(\widehat{MOD}+\widehat{AOM}=\widehat{AOD}=90\Rightarrow\widehat{AOE}+\widehat{AOM}=\widehat{MOE}=90\)

Suy ra ĐPCM

d/Có \(\Delta AOE=\Delta COF\) : OA=OC, \(\widehat{AOE}=\widehat{COF},\widehat{OAE}=\widehat{OCF}\left(SLT\right)\)

Suy ra OE=OF

Từ (2) ta cũng có OM=OE và OM=ON (CMT) suy ra

OE=OF=OM=ON suy ra MENF là hcn

Mà EF vuông góc MN nên MENF là h/vuông

7 tháng 3 2017

cái này như là đề hsg toán 8 nghệ an 2013-14 , search trên youtube có

10 tháng 2 2017
Câu cuối hơi khó
19 tháng 3 2017

cuoi cau nay hoi kho mot chut nhung van de dang

8 tháng 1 2022

Xemundefined

a: Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

b: AM+MB=AB

CN+ND=CD

mà MB=ND và AB=CD

nên AM=CN

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

c: AMCN là hình bình hành

=>AN//CM

=>NK//MH

BMDN là hình bình hành

=>BN//DM

=>NH//KM

Xét tứ giác MKNH có

MK//NH

MH//NK

Do đó: MKNH là hình bình hành

16 tháng 10 2023

ngu