Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: O là giao điểm 2 đường chéo (gt) => O là trung điểm của AC và BD => BO = OD
Xét tg DOM và tg BON ta có: BO = OD (cmt); \(\widehat{DOM}=\widehat{BON}\) ( đối đỉnh); \(\widehat{ODM}=\widehat{OBN}\)( so le trong)
=> tg DOM = tg BON (g.c.g) =>> DM = BN
b/ Ta có: AD // BC (vì ABCD là hình vuông) ma M \(\in\)AD va N \(\in\) BC
=> MD // BN mà MD = BN (cmt) =>. Tứ giác BMDN là hình bình hành
a.
Xét hai tam giác vuông ABE và ADH:
\(AD=AB\)
\(\widehat{BAE}=\widehat{DAH}\) (cùng phụ \(\widehat{DAE}\))
\(\Rightarrow\Delta_vABE=\Delta_vADH\) (góc nhọn-cạnh góc vuông) (1)
\(\Rightarrow AH=AE\)
\(\Rightarrow\Delta AHE\) vuông cân tại A
b. Cũng từ (1) ta có \(BE=DH\)
Xét hai tam giác vuông ABE và FDA có:
\(\widehat{BAE}=\widehat{AFD}\) (so le trong)
\(\Rightarrow\Delta_vABE\sim\Delta_vFDA\)
\(\Rightarrow\dfrac{AB}{DF}=\dfrac{BE}{AD}\Rightarrow AB.AD=BE.DF\Rightarrow AB^2=HD.DF\) (do AD=AB và BE=HD)
c. Ta có: \(\left\{{}\begin{matrix}S_{HAF}=\dfrac{1}{2}AH.AF\\S_{HAF}=\dfrac{1}{2}AD.HF\end{matrix}\right.\) \(\Rightarrow AH.AF=AD.HF\)
\(\Rightarrow\dfrac{1}{AD}=\dfrac{HF}{AH.AF}\Rightarrow\dfrac{1}{AD^2}=\dfrac{HF^2}{AH^2.AF^2}=\dfrac{AH^2+AF^2}{AH^2.AF^2}\)
\(\Leftrightarrow\dfrac{1}{AD^2}=\dfrac{1}{AF^2}+\dfrac{1}{AH^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) (do AH=AE theo chứng minh câu a)
\(\Leftrightarrow\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{a^2}\) cố định (đpcm)
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a/Xét tgiac MOD và NOB có : OB=OD, \(\widehat{MOD}=\widehat{NOB},\widehat{MDO}=\widehat{NBO}\left(SLT\right)\)
Suy ra \(\Delta MOD=\Delta NOB\left(g-c-g\right)\left(1\right)\Rightarrow DM=BN\)
b/Từ (1) suy ra OM=ON ta lại có OB=OD nên suy ra BMDN là hbh
c/Xét tgiac AOE và DOM có : AO=OD, AE=MD( MD=BN(1)), \(\widehat{MDO}=\widehat{OAE}=45\)
Suy ra \(\Delta AOE=\Delta DOM\left(c-g-c\right)\left(2\right)\Rightarrow\widehat{MOD}=\widehat{AOE}\)
Mà \(\widehat{MOD}+\widehat{AOM}=\widehat{AOD}=90\Rightarrow\widehat{AOE}+\widehat{AOM}=\widehat{MOE}=90\)
Suy ra ĐPCM
d/Có \(\Delta AOE=\Delta COF\) : OA=OC, \(\widehat{AOE}=\widehat{COF},\widehat{OAE}=\widehat{OCF}\left(SLT\right)\)
Suy ra OE=OF
Từ (2) ta cũng có OM=OE và OM=ON (CMT) suy ra
OE=OF=OM=ON suy ra MENF là hcn
Mà EF vuông góc MN nên MENF là h/vuông
a: Xét ΔDOM và ΔBON có
góc DOM=góc BON
OD=OB
góc ODM=góc OBN
=>ΔDOM=ΔBON
=>DM=BN
mà DM//BN
nên BMDN là hình bình hành
b: Xét ΔEAM vuông tại A và ΔNBE vuông tại B có
EA=NB
AM=BE
Do đó: ΔEAM=ΔNBE
=>EM=EN
=>ΔEMN cân tại E
mà EO là trung tuyến
nen EO vuông góc với MN