Cho hình tứ diện đều ABCD có cạnh bằng 3. Gọi G...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 : Cho hình lập phương ABCDEFGH ,góc giữa hai véc tơ \(\overrightarrow{AC},\overrightarrow{BG}\) là : A. 450 B. 300 C. 600 D. 1200 Câu 2 : Cho tứ diện ABCD có AB = CD = a , IJ = \(\frac{a\sqrt{3}}{2}\) ( I , J lần lượt là trung điểm của BC và AD ) . Số đo giữa hai đường thẳng AB và CD là : A. 300 B. 450 C. 600 D. 900 Câu 3 : Cho hình chóp S.ABCD có SA vuông góc với (ABCD) , đáy ABCD là hình chữ nhật . Biết SA...
Đọc tiếp

Câu 1 : Cho hình lập phương ABCDEFGH ,góc giữa hai véc tơ \(\overrightarrow{AC},\overrightarrow{BG}\) là :

A. 450

B. 300

C. 600

D. 1200

Câu 2 : Cho tứ diện ABCD có AB = CD = a , IJ = \(\frac{a\sqrt{3}}{2}\) ( I , J lần lượt là trung điểm của BC và AD ) . Số đo giữa hai đường thẳng AB và CD là :

A. 300

B. 450

C. 600

D. 900

Câu 3 : Cho hình chóp S.ABCD có SA vuông góc với (ABCD) , đáy ABCD là hình chữ nhật . Biết SA = a\(\sqrt{3}\) , AB = a , AD = \(a\sqrt{3}\) . Số đo giữa cạnh bên SB và cạnh AB là :

A. 600

B. 450

C. 900

D. 300

Câu 4 : Cho tứ diện ABCD đều cạnh bằng a . Gọi M là trung điểm CD , \(\alpha\) là góc giữa AC và BM . Chọn khẳng định đúng ?

A. \(cos\alpha=\frac{\sqrt{3}}{4}\)

B. \(cos\alpha=\frac{1}{\sqrt{3}}\)

C. \(cos\alpha=\frac{\sqrt{3}}{6}\)

D. \(\alpha=60^0\)

Câu 5: Cho tứ diện ABCD với \(AB\perp AC\) , \(AB\perp BD\) . Gọi P , Q lần lượt là trung điểm của AB và CD . Góc giữa PQ và AB là :

A. 900

B. 600

C. 300

D. 450

Câu 6 : Cho hình thoi ABCD có tâm O , AC = 2a . Lấy điểm S không thuộc (ABCD) sao cho \(SO\perp\left(ABCD\right)\) . Biết tan \(\widehat{SOB}\) = \(\frac{1}{2}\) . Tính số đo của góc giữa SC và (ABCD)

A. 750

B. 450

C. 300

D. 600

Câu 7 : Cho hình chóp S.ABC có \(SA\perp\left(ABC\right)\) và tam giác ABC không vuông . Gọi H , K lần lượt là trực tâm \(\Delta ABC\)\(\Delta SBC\) . Số đo góc tạo bởi SC và mp (BHK) là :

A. 450

B. 1200

C. 900

D. 650

Câu 8 : Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a , \(SA\perp\left(ABC\right)\) , \(SA=a\frac{\sqrt{3}}{2}\) . Gọi (P) là mặt phẳng đi qua A và vuông góc với trung tuyến SM của tam giác SBC . Thiết diện của (P) và hình chóp S.ABC có diện tích bằng ?

A. \(\frac{a^2\sqrt{6}}{8}\)

B. \(\frac{a^2}{6}\)

C. \(a^2\)

D. \(\frac{a^2\sqrt{16}}{16}\)

Câu 9 : Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a . Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm H của cạnh BC . Biết tam giác SBC là tam giác đều . Tính số đo của góc giữa SA và (ABC)

A. 600

B. 750

C. 450

D. 300

HELP ME !!!! giải chi tiết giùm mình với ạ

4
NV
6 tháng 6 2020

Câu 8:

Kẻ \(AH\perp SM\)

Trong mặt phẳng (SBC), qua H kẻ đường thẳng song song BC cắt SB và SC lần lượt tại P và Q

\(\Rightarrow\Delta APQ\) là thiết diện của (P) và chóp

\(AM=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

\(\Rightarrow SA=AM\Rightarrow\Delta SAM\) vuông cân tại A

\(\Rightarrow AH=\frac{SA\sqrt{2}}{2}=\frac{a\sqrt{6}}{4}\) đồng thời H là trung điểm SM

\(\Rightarrow PQ=\frac{1}{2}BC=\frac{a}{2}\) (đường trung bình)

\(\Rightarrow S_{\Delta APQ}=\frac{1}{2}AH.PQ=\frac{a^2\sqrt{6}}{16}\)

Câu 9.

\(SH\perp\left(ABC\right)\Rightarrow\widehat{SAH}\) là góc giữa SA và (ABC)

\(SH=AH=\frac{a\sqrt{3}}{2}\Rightarrow\Delta SAH\) vuông cân tại H

\(\Rightarrow\widehat{SAH}=45^0\)

NV
6 tháng 6 2020

Câu 6:

Bạn kiểm tra lại đề, \(SO\perp\left(ABCD\right)\Rightarrow SO\perp OB\Rightarrow\widehat{SOB}=90^0\)

Nên không thể có chuyện \(tan\widehat{SOB}=\frac{1}{2}\)

Câu 7:

H là trực tâm tam giác ABC \(\Rightarrow BH\perp AC\)

\(SA\perp\left(ABC\right)\Rightarrow SA\perp BH\)

\(\Rightarrow BH\perp\left(SAC\right)\Rightarrow BH\perp SC\) (1)

K là trực tâm tam giác SBC \(\Rightarrow BK\perp SC\) (2)

(1);(2) \(\Rightarrow SC\perp\left(BHK\right)\Rightarrow\) góc giữa SC và (BHK) bằng 90 độ

NV
14 tháng 4 2020

Đặt \(AB=AC=AD=x\)

Do \(\widehat{BAC}=60^0\Rightarrow\Delta ABC\) đều \(\Rightarrow BC=x\)

Tương tự tam giác ABD đều \(\Rightarrow BD=x\)

\(\Rightarrow\Delta BCD\) cân tại B

Gọi H là hình chiếu vuông góc của A lên (BCD)

Do \(AB=AC=AD\Rightarrow HA=HB=HC\)

\(\Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác

Mà BCD cân tại B \(\Rightarrow BH\perp CD\Rightarrow CD\perp\left(AHB\right)\Rightarrow CD\perp AB\)

b/Từ câu a, do N là trung điểm CD nên N là giao điểm của BH và CD

\(\Rightarrow MN\in\left(ABH\right)\Rightarrow CD\perp MN\)

Lại có: \(\Delta DBC=\Delta DAC\) (c.c.c)

\(\Rightarrow BN=AN\)

\(\Rightarrow\Delta ABN\) cân tại N \(\Rightarrow MN\perp AB\) (trong tam giác cân trung tuyến là đường cao)

NV
14 tháng 4 2020

Vậy thì áp dụng định lý hàm cos:

\(cos\widehat{MIN}=\frac{IM^2+IN^2-MN^2}{2IM.IN}=\frac{a^2+2a^2-5a^2}{2.a.a\sqrt{2}}=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\widehat{MIN}=135^0\Rightarrow\) góc giữa AB và CD là \(180^0-135^0=45^0\)

Trùm Trường

NV
14 tháng 4 2020

IM là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}IM=\frac{AB}{2}=a\\IM//AB\end{matrix}\right.\)

IN là đường trung bình tam giác ACD \(\Rightarrow\left\{{}\begin{matrix}IN=\frac{CD}{2}=a\sqrt{2}\\IN//CD\end{matrix}\right.\)

\(\Rightarrow\) Góc giữa AB và CD bằng góc nhọn giữa IN và IM

Đến đây thì nhận ra là đề thiếu dữ kiện để tính, chỉ có chừng này dữ kiện ko thể tính được góc giữa 2 đường thẳng AB và CD. Chắc bạn ghi thiếu đề

Câu 1 :Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính \(\overrightarrow{AB}.\overrightarrow{EG}\) A. \(\frac{a^2\sqrt{2}}{2}\) B. \(a^2\sqrt{3}\) C. \(a^2\sqrt{2}\) D. \(a^2\) Câu 2: Cho tam giác ABC vuông cân tại B và AC = a . Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = \(\frac{a\sqrt{6}}{2}\) . Tính số đo giữa đường thẳng SB và (ABC) A. 300 B. 450 C. 600 D. 900 Câu 3 : Cho hình chóp đều S.ABCD...
Đọc tiếp

Câu 1 :Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính \(\overrightarrow{AB}.\overrightarrow{EG}\)

A. \(\frac{a^2\sqrt{2}}{2}\)

B. \(a^2\sqrt{3}\)

C. \(a^2\sqrt{2}\)

D. \(a^2\)

Câu 2: Cho tam giác ABC vuông cân tại B và AC = a . Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = \(\frac{a\sqrt{6}}{2}\) . Tính số đo giữa đường thẳng SB và (ABC)

A. 300

B. 450

C. 600

D. 900

Câu 3 : Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a , điểm M thuộc cạnh SC sao cho SM = 2MC . Mặt phẳng (P) chứa AM và song song với BD . Tính diện tích thiết diện của hình chóp S.ABCD cắt bởi (P)

A. \(\frac{\sqrt{3}a^2}{5}\) C. \(\frac{2\sqrt{26}a^2}{15}\) D. \(\frac{2\sqrt{3}a^2}{5}\)

B. \(\frac{4\sqrt{26}a^2}{15}\)

Câu 4 : Cho hình lập phương ABCD.EFGH . Góc giữa cặp véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{EH}\) bằng :

A. 00

B. 600

C. 900

D. 300

Câu 5 : Tứ diện đều ABCD số đo góc giữa hai véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{AD}\)

A. 450

B. 300

C. 900

D. 600

Câu 6 : Cho hình lập phương ABCD.A'B'C'D' . Tính góc giữa hai đường thẳng AB và A'C'

A. 600

B. 450

C. 900

D. 300

Câu 7 : Cho hình lập phương ABCD.A'B'C'D' , góc giữa hai đường thẳng A'B và B'C là :

A. 450

B. 300

C. 600

D. 900

Câu 8 : Trong không gian cho đường thẳng \(\Delta\) và điểm O . Qua O có mấy mặt phẳng vuông góc với \(\Delta\) cho trước ?

A. 2

B. 3

C. Vô số

D. 1

Câu 9 : Cho tứ diện đều ABCD . Tích vô hướng \(\overrightarrow{AB}.\overrightarrow{CD}\) bằng

A. \(\frac{a^2}{2}\)

B. 0

C. \(-\frac{a^2}{2}\)

D. \(a^2\)

Câu 10: Cho hình lập phương ABCD.A'B'C'D' . Tính góc giữa hai đường thẳng AB và AD

A. 900

B. 600

C. 450

D. 300

Câu 11 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 3a , AD = 2a , SA vuông góc với mặt phẳng (ABCD) , SA = a . Gọi \(\varphi\) là góc giữa đường thẳng SC và mp (ABCD) . Khi đó tan \(\varphi\) bằng bao nhiêu ?

A. \(\frac{\sqrt{11}}{11}\)

B. \(\frac{\sqrt{13}}{13}\)

C. \(\frac{\sqrt{7}}{7}\)

D. \(\frac{\sqrt{5}}{5}\)

Câu 12 : Cho hình lập phương ABCD.EFGH . Hãy xác định góc giữa cặp véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{EG}\)

A. 600

B. 450

C. 1200

D. 900

HELP ME !!!!! giải chi tiết từng câu giùm cho mình với ạ

5
NV
6 tháng 6 2020

11.

\(SA\perp\left(ABCD\right)\Rightarrow\) AC là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)

\(\Rightarrow\widehat{SCA}=\varphi\)

\(AC=BD=\sqrt{AB^2+AD^2}=a\sqrt{13}\)

\(tan\varphi=\frac{SA}{AC}=\frac{\sqrt{13}}{13}\)

12.

Hai vecto \(\overrightarrow{AB}\)\(\overrightarrow{EF}\) song song cùng chiều

\(\Rightarrow\left(\overrightarrow{AB};\overrightarrow{EG}\right)=\left(\overrightarrow{EF};\overrightarrow{EG}\right)=\widehat{GEF}=45^0\)

NV
6 tháng 6 2020

8.

Qua O có 1 và chỉ 1 mặt phẳng vuông góc \(\Delta\)

9.

Gọi O là tâm tam giác BCD

\(\Rightarrow AO\perp\left(BCD\right)\Rightarrow AO\perp CD\)

\(CD\perp BO\) (trung tuyến đồng thời là đường cao)

\(\Rightarrow CD\perp\left(ABO\right)\Rightarrow CD\perp AB\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{CD}=0\)

10.

\(AB\perp AD\Rightarrow\widehat{BAD}=90^0\)

NV
4 tháng 5 2020

\(DA\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu của BD lên (ABC)

\(\Rightarrow\widehat{DBA}\) là góc giữa BD và (ABC)

\(tan\widehat{DBA}=\frac{AD}{AB}=\sqrt{3}\Rightarrow\widehat{DBA}=60^0\)

Gọi H là trung điểm AC \(\Rightarrow BH\perp AC\) (tam giác cân thì trung tuyến tại đỉnh là đường cao)

\(AD\perp\left(ABC\right)\Rightarrow AD\perp BH\)

\(\Rightarrow BH\perp\left(ACD\right)\Rightarrow\widehat{BDH}\) là góc giữa BD và (DAC)

\(AC=AB\sqrt{2}=a\sqrt{2}\Rightarrow BH=\frac{AC}{2}=\frac{a\sqrt{2}}{2}\)

\(BD=\sqrt{AD^2+AB^2}=2a\)

\(\Rightarrow sin\widehat{BDH}=\frac{BH}{BD}=\frac{\sqrt{2}}{4}\Rightarrow\widehat{BDH}\approx20^042'\)

NV
6 tháng 6 2020

a/ Đề sai

b/ Gọi H là trung điểm OC \(\Rightarrow\) MH là đường trung bình tam giác SOC

\(\Rightarrow MH//SO\Rightarrow MH\perp\left(ABCD\right)\)

\(\left\{{}\begin{matrix}\left(SAC\right)\perp\left(ABCD\right)\\\left(SAC\right)\perp\left(MBD\right)\end{matrix}\right.\) \(\Rightarrow\widehat{MOH}\) là góc giữa (MBD) và (ABCD)

\(AC=a\sqrt{2}\Rightarrow OC=\frac{a\sqrt{2}}{2}\Rightarrow OH=\frac{a\sqrt{2}}{4}\)

\(OM=\frac{1}{2}SC=\frac{a\sqrt{5}}{4}\)

\(\Rightarrow cos\widehat{MOH}=\frac{OH}{OM}=\sqrt{\frac{2}{5}}\Rightarrow\widehat{MOH}\approx50^046'\)

c/ Gọi N là trung điểm AB \(\Rightarrow AB\perp\left(SON\right)\Rightarrow\widehat{SNO}\) là góc giữa (SAB) và (ABCD)

\(ON=\frac{1}{2}BC=\frac{a}{2}\) ; \(SO=\sqrt{SC^2-OC^2}=\frac{a\sqrt{3}}{2}\)

\(tan\widehat{SNO}=\frac{SO}{ON}=\sqrt{3}\Rightarrow\widehat{SNO}=60^0\)