K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

-Gọi AC cắt BD tại O. Ta có MN=OB=OD(=1/2.BD).
-Ta có: tam giác BMD vuông tại M có O là trung điểm của BD nên MO=1/2.BD. 
tam giác BND vuông tại N có O là trung điểm của BD nên NO=1/2.BD.
Suy ra: MO=ON=MN=BO=OD. => tam giác MON đều => góc MON=60 độ. 
-Mà góc MOD=góc NOD=1/2. góc MON=30 độ và OM=OD => góc MDO=75 độ. => góc ADC=góc ABC=2.góc MDO= 150 độ. 
=> góc BAD=góc BCD= 30 độ.
Vậy góc A và góc C của hình thoi ABCD bằng 30 độ; góc B và góc D của hình thoi bằng 150 độ. 

1.

A D C B E F H K I

gọi H, K lần lượt là hình chiếu vuông góc của D lên cạnh AF, CE

Dễ dàng chứng minh đc

S AFD=S CED=1/2 S ABCD

S AFD=1/2 AF.DH, S AFD=1/2.CE.DK ( VÌ CE = AF )

=> DH=DK

=> ĐPCM

a: Xét ΔAMB vuông tại M và ΔAPD vuông tại P có

AB=AD

góc A chung

Do đó: ΔAMB=ΔAPD

=>AM=AP

Xét ΔAMH vuông tại M và ΔAPH vuông tại P có

AH chung

AM=AP

Do đó: ΔAMH=ΔAPH

=>góc MAH=góc PAH

=>AH là phân giác của góc BAD(1)

ΔABD cân tại A

mà AO là trung tuyến

nên AO là phân giác của góc BAD(2)

Từ (1), (2) suy ra A,H,O thẳng hàng

b: Xét ΔCDB có

DQ,BN là đường cao

DQ cắt BN tại K

Do đó; K là trực tâm của ΔCDB

=>CK vuông góc BD

ΔCBD cân tại C

mà CO là trung tuyến

nên CO vuông góc BD

=>C,K,O thẳng hàng

C,K,O thẳng hàng

A,H,O thẳng hàng

A,O,C thẳng hàng(ABCD là hình thoi có O là giao của hai đường chéo AC và BD)

Do đó: C,K,O,H,A thẳng hàng

=>A,H,K,C thẳng hàng

=>HK vuông góc DB

c: Xét tứ giác BHDK có

BH//DK

BK//DH

Do đó: BHDK là hình bình hành

mà HK vuông góc BD

nên BHDK là hình thoi

a: Xét ΔBAM và ΔBCN có

BA=BC

góc BAM=góc BCN

AM=CN

Do đó: ΔBAM=ΔBCN

=>BM=BN

=>ΔBMN cân tại B

b: DM+MA=DA

DN+NC=DC

mà DA=DC và MA=NC

nên DM=DN

BM=BN

DM=DN

Do đó: BD là trung trực của MN

=>BD vuông góc MN

c: Xét ΔABD có AB=AD và góc A=60 độ

nên ΔABD đều

ΔABD đều có BM là trung tuyến

nên BM là phân giác của góc ABD(1)

Xét ΔCBD có CB=CD và góc C=60 độ

nên ΔCBD đều

ΔCBD đều có BN là trung tuyến

nên BN là phân giác của góc DBC(2)

Từ (1), (2) suy ra góc MBN=1/2(góc ABD+góc CBD)

=1/2*góc ABC

=60 độ

Xét ΔBMN có BM=BN và góc MBN=60 độ

nên ΔBMN đều

=>góc BMN=60 độ

Xét ΔPBD vuông tại P và ΔMDB vuông tại M có

DB chung

góc PBD=góc MDB

=>ΔPBD=ΔMDB

=>góc EBD=góc EDB

=>EB=ED

Xét tứ giá BEDF có

BE//DF

BF//DE

EB=ED

=>BEDF là hình thoi