Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
gọi H, K lần lượt là hình chiếu vuông góc của D lên cạnh AF, CE
Dễ dàng chứng minh đc
S AFD=S CED=1/2 S ABCD
S AFD=1/2 AF.DH, S AFD=1/2.CE.DK ( VÌ CE = AF )
=> DH=DK
=> ĐPCM
b: Xét ΔABE vuông tại E và ΔADF vuông tại F có
AB=AD
góc ABE=góc ADF
=>ΔABE=ΔADF
=>EB=DF
CE+EB=CB
CF+FD=CD
mà EB=FD và CB=CD
nên CE=CF
Xét ΔCBD có CE/CB=CF/CD
nên EF//BD
mà EF=1/2BD
nên EFlà đường trung bình của ΔBCD
=>E là trung điểm của BC, F là trung điểm của CD
Xét ΔABC có
AE vừa là đường cao, vừa là trung tuyến
=>ΔABC cân tại A
=>AB=AC
mà AB=BC
nên ΔABC đều
=>góc ABC=60 độ
=>góc ADC=60 độ
góc BAD=góc BCD=180-60=120 độ
Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
DB chung
góc PBD=góc MDB
=>ΔPBD=ΔMDB
=>góc EBD=góc EDB
=>EB=ED
Xét tứ giá BEDF có
BE//DF
BF//DE
EB=ED
=>BEDF là hình thoi
a: Xét ΔBAM và ΔBCN có
BA=BC
góc BAM=góc BCN
AM=CN
Do đó: ΔBAM=ΔBCN
=>BM=BN
=>ΔBMN cân tại B
b: DM+MA=DA
DN+NC=DC
mà DA=DC và MA=NC
nên DM=DN
BM=BN
DM=DN
Do đó: BD là trung trực của MN
=>BD vuông góc MN
c: Xét ΔABD có AB=AD và góc A=60 độ
nên ΔABD đều
ΔABD đều có BM là trung tuyến
nên BM là phân giác của góc ABD(1)
Xét ΔCBD có CB=CD và góc C=60 độ
nên ΔCBD đều
ΔCBD đều có BN là trung tuyến
nên BN là phân giác của góc DBC(2)
Từ (1), (2) suy ra góc MBN=1/2(góc ABD+góc CBD)
=1/2*góc ABC
=60 độ
Xét ΔBMN có BM=BN và góc MBN=60 độ
nên ΔBMN đều
=>góc BMN=60 độ
-Gọi AC cắt BD tại O. Ta có MN=OB=OD(=1/2.BD).
-Ta có: tam giác BMD vuông tại M có O là trung điểm của BD nên MO=1/2.BD.
tam giác BND vuông tại N có O là trung điểm của BD nên NO=1/2.BD.
Suy ra: MO=ON=MN=BO=OD. => tam giác MON đều => góc MON=60 độ.
-Mà góc MOD=góc NOD=1/2. góc MON=30 độ và OM=OD => góc MDO=75 độ. => góc ADC=góc ABC=2.góc MDO= 150 độ.
=> góc BAD=góc BCD= 30 độ.
Vậy góc A và góc C của hình thoi ABCD bằng 30 độ; góc B và góc D của hình thoi bằng 150 độ.