K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác ABCD có 

\(\widehat{A}+\widehat{D}=180^0\)

Do đó: ABCD là tứ giác nội tiếp

hay A,B,C,D cùng thuộc một đường tròn

12 tháng 9 2021

Vì \(AD//BC\) nên \(\widehat{A}+\widehat{B}=180\left(trong.cùng.phía\right)\)

\(\Rightarrow ABCD\) nt đường tròn

Vì \(OA=OC=R\) nên \(O\in\) đường trung trực AC

Vì \(AB=BC=\dfrac{1}{2}AD\) nên \(B\in\) đường trung trực AC

\(\Rightarrow OB\) là đường trung trực của \(AC\)

Vậy \(OB\perp AC\)

12 tháng 9 2021

giúp mik

 

18 tháng 4 2020

Hình bạn tự vẽ nha!!

a.)Ta có:\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\) 

              \(BE\perp AD\Rightarrow\widehat{AEB}=90^0\)

Xét tứ giác \(AEHB\)có:

            \(\widehat{AHB}=\widehat{AEB}\left(=90^0\right)\)

Mà 2 góc này cùng nhìn \(AB\)

\(\Rightarrow\)Tứ giác\(AEHB\)nội tiếp (o)

\(\Rightarrow\)\(A,E,H,B\in\)đường tròn.

b.)Có tứ giác \(AEHB\)nội tiếp

\(\Rightarrow\widehat{DEH}=\widehat{HBA}\)

\(\Rightarrow\widehat{DEH}=\widehat{CBA}\)

Trong (o) có:\(\widehat{CDA}=\widehat{CBA}\)(2 góc nội tiếp chắn cung \(AC\))

\(\Rightarrow\widehat{CDA}=\widehat{DEN}\left(=\widehat{CBA}\right)\)

Mà 2 góc này ở vị trí SLT

\(\Rightarrow EH//CD\left(\text{đ}pcm\right)\)

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13cm

Ta có: ΔABC vuông tại A

nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC

hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)

Bài 2: 

Ta có: ABCD là hình thang cân

nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)

hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)