Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. a) HS tự chứng minh
b) Kẻ đường cao AH, BK,chứng minh được DH = CK
Ta được H D = C D − A B 2 = 3 c m
Þ AH = 4cm Þ SABCD = 20cm2
Xét △ABD và △BAC có :
AD = BC (gt)
AB chung
^A = ^B (gt)
\(\Rightarrow\)△ABD = △BAC (cgc)
\(\Rightarrow\)^ADB = ^ BCA
Mà ^ADC = ^BCD
\(\Rightarrow\)^ODC = ^OCD
Lại có : AC ⊥ BD
\(\Rightarrow\)△OCD vuông cân tại O
Chứng minh tương tự với △OAB :
\(\Rightarrow\)ĐPCM
Áp dụng định lí Pitago vào △OAB vuông tại O có :
Có: OA2 + OB2 = AB2
=> 2OA2 = 16
=> OA = \(2\sqrt{2}\)cm
Tương tự: OD = \(4\sqrt{2}\)cm
Kẻ MN đi qua O và vuông góc với AB(tại M) và CD(tại N)
=> M là trung điểm AB ; N là trung điểm CD (vì ABCD là hình thang cân)
Có: OM2 = OA2 - AM2 = \(\left(2\sqrt{2}\right)^2-2^2\) = 8 - 4 = 4 cm
=> OM = 2cm
Tương tự chứng minh :
=> ON = 4 cm
=> MN = 6 cm
Vậy SABCD = \(\frac{\left(4+8\right).6}{2}=36\) cm2
a: Xét ΔFAB và ΔFCD có
góc FAB=góc FCD
góc AFB=góc CFD
=>ΔFAB đồng dạng với ΔFCD
b: ΔFAB đồng dạng với ΔFCD
=>FA/FC=FB/FD
=>FA*FD=FB*FC