Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình thang ABCD (AB//CD) có A= 50 độ, C= 2 lần góc B . Tính số đo các góc tứ giác ABCD
đó ạ
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)
Ta có AB // CD
\(\Rightarrow\)\(\widehat{A}+\widehat{D}=180\)
Mà \(\widehat{A}-\widehat{D}=20\)( gt )
\(\Rightarrow\)\(\widehat{A}=\left(180+20\right):2=100\)
\(\widehat{D}=100-20=80\)
\(\widehat{B}+\widehat{C}=180\) ( tcp ; AB // CD )
Mà \(\widehat{B}=2\widehat{C}\) ( gt )
\(\Rightarrow\)\(2\widehat{C}+\widehat{C}=180\)
\(\Rightarrow\)\(3.\widehat{C}=180\)
\(\widehat{C}=180:3=60\)
\(\Rightarrow\)\(\widehat{B}=60.2=120\)
Vậy ...............................................
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ