Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(S=\dfrac{12+20}{2}\cdot8=16\cdot8=128\left(cm^2\right)\)
Bài 2:
Vì ABCD là hình thang cân (gt)
Suy ra: BD = AC (hình thang cân có hai đường chéo bằng nhau)
BD = 5cm (gt)
AC = 3cm (gt)
5cm > 3cm
Suy ra BD > AC (vô lí)
Vậy không tồn tại hình thang cân nào thỏa mãn đề bài.
đây:
Đáy CD dài : 5.2=10 (cm)
Độ dài tổng 2 cạnh bên : 27 - 5 - 10 = 12 (cm)
Độ dài cạnh bên AD dài : 12:2 = 6 (cm)
Đóa bẹn hiền
a) Ta có: BD // MN
=> Khoảng cách từ BD đến MN = khoảng cách từ MN đến BD
Và gọi khoảng cách đó là h
\(\Rightarrow\hept{\begin{cases}S_{\Delta BMN}=\frac{1}{2}h\cdot MN\\S_{\Delta DMN}=\frac{1}{2}h\cdot MN\end{cases}}\Rightarrow S_{\Delta BMN}=S_{\Delta DMN}\)
b) \(\frac{S_{\Delta DMA}}{S_{\Delta DAC}}=\frac{MA}{AC}=\frac{1}{2}\Rightarrow S_{\Delta DMA}=\frac{1}{2}S_{\Delta DAC}\)
\(\frac{S_{\Delta ABM}}{S_{\Delta ABC}}=\frac{MA}{AC}=\frac{1}{2}\Rightarrow S_{\Delta ABM}=\frac{1}{2}S_{\Delta ABC}\)
\(\Rightarrow S_{\Delta DMA}+S_{\Delta ABM}=\frac{1}{2}\cdot\left(S_{\Delta DAC}+S_{\Delta ABC}\right)\)
\(\Rightarrow S_{ABMD}=\frac{1}{2}\cdot16=8\left(cm^2\right)\)
Vì ABCD là hình thang và AB // CD
- \(\Rightarrow\)AD = BC = 5 cm
Vậy BC = 5 cm
- \(\Rightarrow\)AC = BD = 7 cm
Vậy BD = 7 cm
Keuka