Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD có E và K lần lượt là trung điểm của AD và DB nên EK là đường trung bình tam giác ABD.
Vậy thì EK // AB
Hoàn toàn tương tự ta có ngay KF // DC, hay KF // AB.
Ta thấy, từ một điểm K có hai đoạn thẳng EK và KF cùng song song với AB. Theo tiên đề Oclit ta có E, K, F thẳng hàng.
b) Xét tam giác ABC có F là trung điểm BC, IF // AB nên IF là đường trung bình tam giác ABC.
Vậy thì AI = IC.
c) Xét tam giác ADC có E, I lần lượt là trung điểm của AD và AC nên EI là đường trung bình tam giác ADC.
Vậy thì \(EI=\frac{DC}{2}\)
Tương tự \(KF=\frac{DC}{2}\)
Vậy nên EI = KF.
Từ đó ta có: EI - KI = KF - KI hay EK = IF.
d) Ta có KF = DC/2 = 10 : 2 = 5 (cm)
IF = AB/2 = 6 : 2 = 3 (cm)
Vậy thì KI = KF - IF = 2 (cm)
a, \(\Delta ABD\) có: \(DE=EA\left(gt\right)\), \(DK=KB\left(gt\right)\Rightarrow\)EK là đường trung bình của \(\Delta ABD\Rightarrow\)\(EK \parallel AB\)(1), \(EK=\dfrac{1}{2}AB\)
Chứng minh tương tự với \(\Delta BDC\) ta có: \(KF \parallel DC\), \(KF=\dfrac{1}{2}DC\)
Ta có: \(KF \parallel DC (cmt), AB \parallel DC (gt)\)\(\Rightarrow KF \parallel AB\)(2)
Điểm K chỉ có một và chỉ có một đường thẳng song song với AB nên từ (1) và (2) và theo tiên đề Ơ-clit về đường thẳng song song \(\Rightarrow\)E, K, F thẳng hàng
b, \(\Delta ABC\) có: \(IF \parallel AB (cmt)\), \(BF=FC\left(gt\right)\Rightarrow AI=IC\)
c, \(\Delta ADC\) có: \(AE=ED\left(gt\right),AI=IC\left(cmt\right)\Rightarrow\)IE là đường trung bình của \(\Delta ADC\Rightarrow IE=\dfrac{1}{2}DC\) mà \(KF=\dfrac{1}{2}DC\left(cmt\right)\Rightarrow IE=KF\)
\(\Delta ABC\) có: \(BF=FC\left(gt\right),AI=IC\left(cmt\right)\Rightarrow\)IF là đường trung bình của \(\Delta ABC\Rightarrow IF=\dfrac{1}{2}AB\) mà \(EK=\dfrac{1}{2}AB\Rightarrow IF=EK\)
d, Ta có: \(EK=\dfrac{1}{2}AB\left(cmt\right)=\dfrac{1}{2}.6=3\left(cm\right)\)
\(IE=\dfrac{1}{2}DC\left(cmt\right)=\dfrac{1}{2}.10=5\left(cm\right)\)
Ta có: \(EK+KI=IE\)
hay \(3+KI=5\)
\(KI=2\left(cm\right)\)
a: Xét hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: EF//AB//CD
Xét ΔADC có
E là trung điểm của AD
EK//DC
Do đó: K là trung điểm của AC
hay KA=KC
Xét ΔBDC có
F là trung điểm của BC
FI//DC
Do đó: I là trung điểm của BD
hay IB=ID
a) Hình thang ABCD có:
E là trung điểm của AD (1)
F là trung điểm của BC
=> EF là đường trung bình của hình thang ABCD
nên EF// CD
=> EK // CD (2)
Từ (1)(2) => KA = KC
b) * Xét tam giác ACD có:
EA =ED (gt)
KA = KC (cmt)
=> EK là đường trung bình của tam giác ACD
=>EK = 1/2 CD
=>CD = 6 x 2
CD= 12 cm
* Tương tự chứng minh KF là đường trung bình của tam giác ABC
=> KF =1/2 AB
=>AB = 2 x 2
AB = 4 cm
a/ Chứng minh rằng AK=KC,BI=ID
Vì FE là đường trung bình hình thang nên FE//AB//CD
E, F là trung điểm của AD và BC nên AK=KC
BI=ID
( trong tam giác đường thẳng qua trung điểm của 1 cạnh, // với cạnh thứ 2 thì qua trung điểm cạnh thứ 3)
b/ CHo AB=6cm,CD=10cm.Tính độ dài EI,KF,IK
EI=KF=1/2.AB=1/2.6=3 (đường trung bình tam giác)
FE=(AB+CD)/2= (10+6)/2=8
IK= FE-EI-KF=8-3-3=2
a) Do \(AB//DC\Rightarrow AB//DM\) \(\Rightarrow\frac{AB}{DM}=\frac{AI}{IM}\)( Talet ) (1)
Tương tự ta có : \(\frac{AB}{CM}=\frac{BK}{KM}\) ( Talet ) (2)
Lại có : \(DM=CM\left(gt\right)\) nên từ (1) và (2)
\(\Rightarrow\frac{AI}{IM}=\frac{BK}{KM}\)
Xét \(\Delta ABM\) có \(\frac{AI}{IM}=\frac{BK}{KM}\) (cmt) , \(I\in AM,K\in BM\)
\(\Rightarrow IK//AB\) ( định lý Talet đảo )
b) Áp dụng định lý Talet lần lượt ta được :
+) \(EI//DM\Rightarrow\frac{EI}{DM}=\frac{AI}{AM}\) (3)
+) \(IK//MC\Rightarrow\frac{AI}{AM}=\frac{AK}{AC}=\frac{IK}{MC}\)(4)
+) \(KF//MC\Rightarrow\frac{BK}{BM}=\frac{KF}{MC}\) (5)
Mà : \(DM=CM\left(gt\right)\)
Nên tuqd (3) (4) và (5) \(\Rightarrow EI=IK=KF\) (đpcm)
a ) Hướng giải :
- Cần chứng minh tứ giác ABDM và tứ giác ABMC là hình bình hành.
- Suy ra KM // AD và IM // BC
- Áp dụng tính chất đường trung bình vào 2 tam giác ADC và DBC
- IK là đường trung bình của tam giác ABM
- IK // AB // DC
b ) Hướng giải ;
- Đầu tiên, cần chứng minh 4 điểm E, I, K, F thẳng hàng theo Tiên đề Ơ - clit
- Tiếp tục dùng tính chất đường trung bình vào các tam giác ADM, BMC
- Cuối cùng, EI = IK = KF \(\left(=\frac{DM}{2}=\frac{MC}{2}\right)\)