Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ BE // AD ; E ∈ CD ⇒ ABED là hình bình hành
⇒ \(\widehat{D}=\widehat{ABE}\) \(;\) \(\widehat{A}=\widehat{BED}\)
Ta có: \(\widehat{A}=\widehat{BED}>\widehat{C}\) \(;\) \(\widehat{ABC}=\widehat{ABE}=\widehat{D}\)
Suy ra: \(\widehat{A}+\widehat{B}>\widehat{C}+\widehat{D}\) ( đpcm )
Kẻ H // AD,H\(\in\)CD \(\Rightarrow\) ABHD là hình bình hành
\(\Rightarrow\)\(\widehat{ABH}=\widehat{D}\) ; \(\widehat{BHD}=\widehat{A}\)
Ta có:
\(\widehat{BHD}=\widehat{A}>\widehat{C}\) ; \(\widehat{ABC}>\widehat{ABH}=\widehat{D}\)
\(\Rightarrow\)\(\widehat{A}+\widehat{B}>\widehat{C}+\widehat{D}\)
BẠn tự vẽ hình nhé
Ta có: AC là cạnh đối diện góc D
BD là cạnh đối diện góc C
Mà góc C < góc D cmt
=> BD < AC định lý
Xét ΔABD và ΔBDC có
\(\widehat{ABD}=\widehat{BDC}\)
\(\widehat{A}=\widehat{CBD}\)
Do đó: ΔABD\(\sim\)ΔBDC
Suy ra: BD/DC=AB/BD
hay \(BD^2=AB\cdot CD\)