K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2022

a. Xét △BDC có: OI//DC (gt).

=>\(\dfrac{OI}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).

=>\(\dfrac{DC}{OI}=\dfrac{BD}{BO}\)

=>\(\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\)

-Xét △ABO có: AB//DC (gt).

=>\(\dfrac{OD}{BO}=\dfrac{DC}{AB}\) (định lí Ta-let).

Mà \(\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\) (cmt).

=>\(\dfrac{DC}{OI}-1=\dfrac{DC}{AB}\)

=>\(\dfrac{DC}{OI}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)

=>\(\dfrac{1}{OI}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{DC}\).

15 tháng 10 2023

Xét ΔDAB có OI//AB

nên \(\dfrac{OI}{AB}=\dfrac{DO}{DB}\)

Xét ΔBDC có OK//DC
nên \(\dfrac{OK}{CD}=\dfrac{BO}{BD}\)

=>\(\dfrac{OI}{AB}+\dfrac{OK}{CD}=\dfrac{BO}{BD}+\dfrac{DO}{DB}=1\)

Xét ΔADC có OI//DC
nên \(\dfrac{OI}{DC}=\dfrac{AI}{AD}\)

Xét ΔBDC có OK//DC

nên \(\dfrac{OK}{DC}=\dfrac{BK}{BC}\)

Xét hình thang ABCD có IK//AB//CD

nên \(\dfrac{AI}{AD}=\dfrac{BK}{BC}\)

=>\(\dfrac{OI}{DC}=\dfrac{OK}{DC}\)

=>OI=OK

=>\(\dfrac{OI}{AB}+\dfrac{OK}{CD}=\dfrac{OI}{AB}+\dfrac{OI}{CD}=1\)

7 tháng 2 2022

Chị bao nhiêu tuổi mà học giỏi thế

26 tháng 4 2020

A B C D E F O

a, xét tam giác ODC có : AB // DC

=> OA/OC = OB/OD = AB/DC (đl)

có : AB = 4; DC = 9 (gt)

=> OA/OC = OB/OD = 4/9 

B, xét tam giác ABD có : EO // AB (gt)  => EO/AB = DO/DB (hệ quả)        (1)

xét tam giác ABC có FO // AB (gt) => OF/AB = CO/CA (hệ quả)                (2)

xét tam giác ODC có AB // DC (gt) => DO/DB = CO/CA   (hệ quả)             (3)

(1)(2)(3) => OE/AB = OF/AB 

=> OE = OF 

xét tam giác ABD có : EO // AB(Gt) => EO/AB = DE/AD  (hệ quả)             (4)

xét tam giác ADC có EO // DC (gt) => OE/DC = EA/AD   (hệ quả)             (5)

(4)(5) => EO/AB + EO/DC = DE/AD + AE/AD 

=> EO(1/AB + 1/DC) = 1                                                                              (*)

xét tam giác ACB có FO // AB (gt) => OF/AB = FC/BC (hệ quả)                 (6)

xét tam giác BDC có OF // DC (gt) => OF/DC = BF/BC (hệ quả)                 (7)

(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC

=> OF(1/AB + 1/DC) = 1                                                                               (**)

(*)(**) => OF(1/AB + 1/DC) + OE(1/AB + 1/DC) = 1 + 1

=> (OE + OF)(1/AB + 1/DC) = 2

=> EF(1/AB + 1/DC) = 2

=> 1/AB + 1/DC = 2/EF