K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2023

Xét ΔDAB có OI//AB

nên \(\dfrac{OI}{AB}=\dfrac{DO}{DB}\)

Xét ΔBDC có OK//DC
nên \(\dfrac{OK}{CD}=\dfrac{BO}{BD}\)

=>\(\dfrac{OI}{AB}+\dfrac{OK}{CD}=\dfrac{BO}{BD}+\dfrac{DO}{DB}=1\)

Xét ΔADC có OI//DC
nên \(\dfrac{OI}{DC}=\dfrac{AI}{AD}\)

Xét ΔBDC có OK//DC

nên \(\dfrac{OK}{DC}=\dfrac{BK}{BC}\)

Xét hình thang ABCD có IK//AB//CD

nên \(\dfrac{AI}{AD}=\dfrac{BK}{BC}\)

=>\(\dfrac{OI}{DC}=\dfrac{OK}{DC}\)

=>OI=OK

=>\(\dfrac{OI}{AB}+\dfrac{OK}{CD}=\dfrac{OI}{AB}+\dfrac{OI}{CD}=1\)

a)

Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau

\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)

Áp dụng định lý Ta-lét:

\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)

\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)

Maf \(CI=DK\)(cmt)

\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD

b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:

\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)

\(\Rightarrow AB^2=EF.CD\)( đpcm ) 

6 tháng 2 2022

a. Xét △BDC có: OI//DC (gt).

=>\(\dfrac{OI}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).

=>\(\dfrac{DC}{OI}=\dfrac{BD}{BO}\)

=>\(\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\)

-Xét △ABO có: AB//DC (gt).

=>\(\dfrac{OD}{BO}=\dfrac{DC}{AB}\) (định lí Ta-let).

Mà \(\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\) (cmt).

=>\(\dfrac{DC}{OI}-1=\dfrac{DC}{AB}\)

=>\(\dfrac{DC}{OI}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)

=>\(\dfrac{1}{OI}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{DC}\).

26 tháng 8 2021

undefined

7 tháng 8 2016

a) Xét ΔOIC và ΔABC có:

   \(\widehat{ACB}\) : góc chung

   \(\widehat{OIC}=\widehat{ABC}\) (đồng vị do JI//AB(gt))

 => ΔOIC~ΔABC(g.g)

=>\(\frac{OI}{AB}=\frac{CI}{BC}\)

=> BC.OI=AB.CI

b) Theo định lý đảo của định lý ta-let vào ΔBDC :

=>  \(\frac{OI}{DC}=\frac{BI}{BC}\)

11 tháng 4 2022

-Sửa đề: \(\widehat{A}=\widehat{D}=90^0\)

a) -△OAB và △OCD có: \(\widehat{OAB}=\widehat{OCD};\widehat{AOB}=\widehat{COD}\)

\(\Rightarrow\)△OAB∼△OCD (g-g).

b) \(AC^2-BD^2=DC^2-AB^2\)

\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)

\(\Leftrightarrow AD^2=AD^2\) (luôn đúng).

c) -△BCD có: OI//DC \(\Rightarrow\dfrac{DC}{OI}=\dfrac{BD}{BO}\Rightarrow\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\)

-△AOB có: AB//DC \(\Rightarrow\dfrac{OD}{BO}=\dfrac{DC}{AB}=\dfrac{DC}{OI}-1\)

\(\Rightarrow\dfrac{DC}{AB}+1=\dfrac{DC}{OI}\Rightarrow\dfrac{DC+AB}{AB}=\dfrac{DC}{OI}\Rightarrow\dfrac{1}{OI}=\dfrac{DC+AB}{DC.AB}=\dfrac{1}{AB}+\dfrac{1}{DC}\)