Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: AM=1/3AC
=>\(S_{ABM}=\dfrac{1}{3}\cdot S_{ABC}\)
=>\(S_{ABC}=54\left(cm^2\right)\)
Giả sử \(\vec{AB} = \mathbf{a}\), \(\vec{AD} = \mathbf{b}\), và \(\vec{AM} = \frac{1}{2}\vec{AC}\).
Vì \(ABCD\) là hình thoi, nên \(\vec{AB} = \vec{DC} = -\vec{CB}\).
Do đó, \(\vec{CB} = -\mathbf{a}\) và \(\vec{AM} = \frac{1}{2}(\vec{AC}) = \frac{1}{2}(\vec{AD} + \vec{DC}) = \frac{1}{2}(\mathbf{b} - \mathbf{a})\).
Bây giờ, tính tích vô hướng \(\vec{MA} \times \vec{CB}\):
\[\vec{MA} \times \vec{CB} = \frac{1}{2}(\mathbf{b} - \mathbf{a}) \times (-\mathbf{a})\]
Sử dụng tích vô hướng của vecto, ta có:
\[\vec{MA} \times \vec{CB} = \frac{1}{2}(\mathbf{b} \times (-\mathbf{a})) - \frac{1}{2}(\mathbf{a} \times (-\mathbf{a})\]
Với \(\mathbf{b} \times (-\mathbf{a}) = -(\mathbf{a} \times \mathbf{b})\), và \(\mathbf{a} \times (-\mathbf{a}) = -\|\mathbf{a}\|^2\), ta có:
\[\vec{MA} \times \vec{CB} = \frac{1}{2}(\mathbf{a} \times \mathbf{b}) + \frac{1}{2}\|\mathbf{a}\|^2\]
Nếu bạn có thông tin cụ thể về \(\mathbf{a}\) và \(\mathbf{b}\), bạn có thể tính toán giá trị này.
a:
Kẻ AH vuông góc BC
\(S_{ABM}=\dfrac{1}{2}\cdot AH\cdot BM\)
\(S_{ACM}=\dfrac{1}{2}\cdot AH\cdot CM\)
mà BM=1/2CM
nên \(S_{ABM}=\dfrac{1}{2}\cdot S_{ACM}\)
b: Kẻ MK vuông góc AC
\(S_{AMN}=\dfrac{1}{2}\cdot MK\cdot AN\)
\(S_{MNC}=\dfrac{1}{2}\cdot MK\cdot NC\)
mà AN=NC
nên \(S_{AMN}=S_{MNC}=\dfrac{1}{2}\cdot S_{AMC}=S_{AMB}\)