K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2022

Do \(AC||A'C'\Rightarrow\widehat{\left(AD;A'C'\right)}=\widehat{\left(AD;AC\right)}=\widehat{CAD}=45^0\)

20 tháng 8 2023

THAM KHẢO:

Thực hành 1 trang 83 Toán 11 tập 2 Chân trời

a) Vì AA′⊥(ABCD) nên góc giữa đường thẳng AA' và (ABCD) là \(90^0\)

b) CC′⊥(ABCD) nên C là hình chiếu vuông góc của C' lên (ABCD).

Suy ra góc giữa BC' và (ABCD) là \(\widehat{C'BC}\)=\(45^O\) (Vì BCC'C' là hình vuông)

c) Gọi cạnh của hình lập phương là a

Ta có: AC=\(a\sqrt{2}\),tan \(\widehat{ACA'}\)=\(\dfrac{1}{\sqrt{2}}\) nên \(\widehat{ACA'}\)=\(35^O\)

AA′⊥(ABCD) nên A là hình chiếu vuông góc của A' lên (ABCD)

Suy ra góc giữa A'C và (ABCD) là \(\widehat{ACA'}\)=\(35^O\)

a: ABCD.A'B'C'D' là hình lập phương

=>AA'//BB'//CC'//DD' và AA'=BB'=CC'=DD'

Xét tứ giác AA'C'C có 

AA'//CC'

AA'=CC'

Do đó: AA'C'C là hình bình hành

=>AC//A'C'

ABCD.A'B'C'D' là hình lập phương

=>ABCD và A'B'C'D' là hình vuông

ABCD là hình vuông

=>AC là phân giác của góc BAD và CA là phân giác của góc BCD

=>\(\widehat{BAC}=\widehat{DAC}=45^0\) và \(\widehat{BCA}=\widehat{DCA}=45^0\)

\(\widehat{A'C';BC}=\widehat{AC;BC}=\widehat{ACB}=45^0\)

b: Xét ΔBAC có M,N lần lượt là trung điểm của BC,BA

=>MN là đường trung bình của ΔBAC

=>MN//AC

Xét ΔA'AD' có

E,F lần lượt là trung điểm của AA',A'D'

=>EF là đường trung bình của ΔA'AD'

=>EF//AD'

ABCD.A'B'C'D là hình vuông

=>ADD'A' là hình vuông; DCC'D' là hình vuông
ABCD là hình vuông

=>\(AC=AB\cdot\sqrt{2}\)(1)

ADD'A' là hình vuông

=>\(AD'=AD\cdot\sqrt{2}=AB\cdot\sqrt{2}\)(2)

DCC'D' là hình vuông

=>\(CD'=CD\cdot\sqrt{2}=AB\cdot\sqrt{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AC=AD'=D'C

=>ΔAD'C đều

=>\(\widehat{D'AC}=60^0\)

\(\widehat{MN;EF}=\widehat{AC;AD'}=\widehat{CAD'}=60^0\)

c: \(\widehat{MN;BC}=\widehat{AC;CB}=\widehat{ACB}=45^0\)

d: \(\widehat{EF;CC'}=\widehat{AD';DD'}=\widehat{AD'D}=45^0\)

13 tháng 10 2017

Đáp án B

Gọi M là trung điểm C’D’. Đặt x là cạnh của hình lập phương

Ta có 


Gọi O là trung điểm A’C. Dễ dàng chứng minh OM ⊥ (A'B'CD)  (xin dành cho bạn đọc).

Suy ra 

10 tháng 5 2019

Đáp án D

Có hình chiếu của AC' xuống đáy là AC mà AC ⊥ BC nên AC'BD. 

16 tháng 11 2018

Đáp án A.

Ta có AA'BC là chóp đều có tất cả các cạnh bằng 1

Ta có 

Lại có  ∆ AB'C có B'C = A'D = 1; (do  là hình thoi cạnh 1 có   B A D ^   =   60 0 )

Do đó 

16 tháng 1 2019

10 tháng 8 2023

\(\overrightarrow{DM}.\overrightarrow{A'N}=\left(\overrightarrow{DA}+\overrightarrow{AM}\right)\left(\overrightarrow{A'B'}+\overrightarrow{B'N}\right)\)

\(=\overrightarrow{DA}.\overrightarrow{A'B'}+\overrightarrow{AM}.\overrightarrow{A'B'}+\overrightarrow{DA}.\overrightarrow{B'N}+\overrightarrow{AM}.\overrightarrow{B'N}\)

( chứng minh được \(DA\perp A'B',AM\perp B'N\) )

\(=0+\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{C'B'}.\left(-\dfrac{1}{2}\overrightarrow{C'B'}\right)+0\)

\(=\dfrac{1}{2}AB^2-\dfrac{1}{2}C'B'^2=0\)

Suy ra \(DM\perp A'N\)

Ý A

Chọn A