K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ABCD.A'B'C'D' là hình lập phương

=>AA'//BB'//CC'//DD' và AA'=BB'=CC'=DD'

Xét tứ giác AA'C'C có 

AA'//CC'

AA'=CC'

Do đó: AA'C'C là hình bình hành

=>AC//A'C'

ABCD.A'B'C'D' là hình lập phương

=>ABCD và A'B'C'D' là hình vuông

ABCD là hình vuông

=>AC là phân giác của góc BAD và CA là phân giác của góc BCD

=>\(\widehat{BAC}=\widehat{DAC}=45^0\) và \(\widehat{BCA}=\widehat{DCA}=45^0\)

\(\widehat{A'C';BC}=\widehat{AC;BC}=\widehat{ACB}=45^0\)

b: Xét ΔBAC có M,N lần lượt là trung điểm của BC,BA

=>MN là đường trung bình của ΔBAC

=>MN//AC

Xét ΔA'AD' có

E,F lần lượt là trung điểm của AA',A'D'

=>EF là đường trung bình của ΔA'AD'

=>EF//AD'

ABCD.A'B'C'D là hình vuông

=>ADD'A' là hình vuông; DCC'D' là hình vuông
ABCD là hình vuông

=>\(AC=AB\cdot\sqrt{2}\)(1)

ADD'A' là hình vuông

=>\(AD'=AD\cdot\sqrt{2}=AB\cdot\sqrt{2}\)(2)

DCC'D' là hình vuông

=>\(CD'=CD\cdot\sqrt{2}=AB\cdot\sqrt{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AC=AD'=D'C

=>ΔAD'C đều

=>\(\widehat{D'AC}=60^0\)

\(\widehat{MN;EF}=\widehat{AC;AD'}=\widehat{CAD'}=60^0\)

c: \(\widehat{MN;BC}=\widehat{AC;CB}=\widehat{ACB}=45^0\)

d: \(\widehat{EF;CC'}=\widehat{AD';DD'}=\widehat{AD'D}=45^0\)

NV
14 tháng 3 2022

a. Gọi cạnh lập phương là a

Ta có: \(AC=\sqrt{AB^2+AD^2}=a\sqrt{2}\) 

\(AH=\sqrt{AD^2+DH^2}=a\sqrt{2}\)

\(CH=\sqrt{CD^2+DH^2}=a\sqrt{2}\)

\(\Rightarrow\Delta ACH\) đều \(\Rightarrow\widehat{CAH}=60^0\)

b.

Do \(B'C||A'D\Rightarrow\) góc giữa A'B và B'C bằng góc giữa A'B và A'D

Tương tự câu a, ta có tam giác A'BD đều \(\Rightarrow\widehat{BA'D}=60^0\)

c.

Do IJ song song SB (đường trung bình), CD song song AB \(\Rightarrow\) góc giữa IJ và CD bằng góc giữa SB và AB

Tam giác SAB đều (các cạnh bằng a) \(\Rightarrow\widehat{SBA}=60^0\)

d.

\(\overrightarrow{EG}=\overrightarrow{AC}\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}=60^0}\) do tam giác FAC đều 

14 tháng 3 2022

Thầy ơi thầy giúp em dạng này với ạ, em sắp thi rồi ạ :'((  https://hoc24.vn/cau-hoi/a-co-bao-nhieu-gia-tri-cua-a-de-limlimits-xrightarrowinftyleftsqrtx2-ax2021-x1righta2b-tim-a-de-ham-so-fxleftbeginmatrixdfracx31x1khixne-13akhix-1end.5243579572507

NV
8 tháng 3 2022

Do \(AC||A'C'\Rightarrow\widehat{\left(A'C';B'C\right)}=\widehat{\left(AC;B'C\right)}=\widehat{ACB'}\)

\(AC=AB'=B'C=AB\sqrt{2}\Rightarrow\Delta ACB'\) đều

\(\Rightarrow\widehat{ACB'}=60^0\)

NV
18 tháng 3 2021

1.

\(\overrightarrow{MN}=\overrightarrow{MB'}+\overrightarrow{B'B}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{AA'}+\dfrac{1}{2}\overrightarrow{AD}\)

\(\overrightarrow{AC'}=\overrightarrow{AB'}+\overrightarrow{B'C'}=\overrightarrow{AB}+\overrightarrow{AA'}+\overrightarrow{AD}\)

\(\overrightarrow{MN}.\overrightarrow{AC'}=\left(\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{AA'}+\dfrac{1}{2}\overrightarrow{AD}\right)\left(\overrightarrow{AB}+\overrightarrow{AA'}+\overrightarrow{AD}\right)\)

\(=\dfrac{1}{2}AB^2-AA'^2+\dfrac{1}{2}AD^2=0\)

\(\Rightarrow MN\perp AC'\)

b.

\(\left\{{}\begin{matrix}AA'\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(ACC'A'\right)\Rightarrow BD\perp AC'\)

Tương tự: \(A'B\perp\left(ADC'B'\right)\Rightarrow A'B\perp AC'\)

\(\Rightarrow AC'\perp\left(A'BD\right)\)

NV
18 tháng 3 2021

2.

Phương trình \(x^3-3x+2=0\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\) có nghiệm kép \(x=1\)

Nên giới hạn đã cho hữu hạn khi và chỉ khi phương trình: \(2\sqrt{1+ax^2}-bx-1=0\) có ít nhất 2 nghiệm \(x=1\) (tức là nghiệm bội 2 trở lên)

Thay \(x=1\) vào:

\(\Rightarrow2\sqrt{1+a}-b-1=0\Rightarrow2\sqrt{1+a}=b+1\)

\(\Rightarrow4\left(a+1\right)=b^2+2b+1\Rightarrow4a=b^2+2b-3\)

Khi đó:

\(\sqrt{4+4ax^2}-bx-1=0\Leftrightarrow\sqrt{4+\left(b^2+2b-3\right)x^2}-bx-1=0\)

\(\Leftrightarrow\sqrt{4+\left(b^2+2b-3\right)x^2}=bx+1\)

\(\Rightarrow4+\left(b^2+2b-3\right)x^2=b^2x^2+2bx+1\)

\(\Rightarrow\left(2b-3\right)x^2-2bx+3=0\)

\(\Rightarrow2bx^2-2bx-3x^2+3=0\)

\(\Rightarrow2bx\left(x-1\right)-\left(x-1\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2bx-3x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\\left(2b-3\right)x=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2b-3}\end{matrix}\right.\) \(\Rightarrow\dfrac{3}{2b-3}=1\Rightarrow b=3\Rightarrow a=3\)

\(c=\lim\limits_{x\rightarrow1}\dfrac{2\sqrt{1+3x^2}-3x-1}{x^3-3x+2}=\dfrac{1}{8}\)

17 tháng 4 2022

C

NV
17 tháng 4 2022

\(A'C'||AC\Rightarrow\) góc cần tìm là góc \(\widehat{CAB'}\)

Mặt khác \(AB'=AC=B'C\) (các đường chéo của hình vuông bằng nhau)

\(\Rightarrow\Delta AB'C\) đều

\(\Rightarrow\widehat{CAB'}=60^0\)

17 tháng 4 2022

D.\(90^o\)

17 tháng 4 2022

D