Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm của cạnh BC. Suy ra :
\(\begin{cases}A'H\perp\left(ABC\right)\\AH=\frac{1}{2}BC=\frac{1}{2}\sqrt{a^2+3a^2}=a\end{cases}\)
Do đó : \(A'H^2=A'A^2-AH^2=3a^2=3a^2\Rightarrow A'H=a\sqrt{3}\)
Vậ \(V_{A'ABC}=\frac{1}{3}A'H.S_{\Delta ABC}=\frac{a^2}{2}\)
Trong tam giác vuông A'B'H ta có :
\(HB'=\sqrt{A'B'^2+A'H^2}=2a\) nên tam giác B'BH cân tại B'
Đặt \(\varphi\) là góc giữa 2 đường thẳng AA' và B'C' thì \(\varphi=\widehat{B'BH}\)
Vậy \(\cos\varphi=\frac{a}{2.2a}=\frac{1}{4}\)
Đáp án A
Gọi H là trung điểm của BC.
Ta có: B C = A B 2 + A C 2 = 2 a , A H = B C 2 = a
tam giác AA'H có A ' H = A A ' 2 - A H 2 = a 3
Vậy thể tích lăng trụ là V = A ' H . S A B C = a 3 . 1 2 . a 2 3 = 3 a 3 2
Phương pháp
- Tính chiều cao A 'H .
- Tính thể tích khối lăng trụ V = S A B C . A ' H
Cách giải:
Tam giác ABC vuông cân đỉnh A cạnh AB = AC = 2a nên BC
Tam giác AHA' vuông tại H nên
Vậy thể tích khối lăng trụ
Chọn B.