K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 3 2022

\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\Rightarrow\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{b}-\overrightarrow{a}\)

Theo Talet: \(\dfrac{A'K}{IK}=\dfrac{B'I}{A'D'}=\dfrac{1}{2}\Rightarrow A'K=\dfrac{2}{3}A'I\)

\(\Rightarrow\overrightarrow{A'K}=\dfrac{2}{3}\overrightarrow{A'I}=\dfrac{2}{3}\left(\overrightarrow{A'B'}+\overrightarrow{B'I}\right)=\dfrac{2}{3}\left(\overrightarrow{A'B'}+\dfrac{1}{2}\overrightarrow{B'C'}\right)\)

\(=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{BC}=\dfrac{2}{3}\overrightarrow{a}+\dfrac{1}{3}\left(\overrightarrow{b}-\overrightarrow{a}\right)=\dfrac{1}{3}\overrightarrow{a}+\dfrac{1}{3}\overrightarrow{b}\)

\(\Rightarrow\overrightarrow{DK}=\overrightarrow{DD'}+\overrightarrow{D'A'}+\overrightarrow{A'K}=\overrightarrow{AA'}-\overrightarrow{BC}+\overrightarrow{A'K}\)

\(=\overrightarrow{c}-\left(\overrightarrow{b}-\overrightarrow{a}\right)+\dfrac{1}{3}\overrightarrow{a}+\dfrac{1}{3}\overrightarrow{b}\)

\(=\dfrac{4}{3}\overrightarrow{a}-\dfrac{2}{3}\overrightarrow{b}+\overrightarrow{c}\)

Chọn A

17 tháng 4 2022

A

NV
17 tháng 4 2022

\(\overrightarrow{BD'}=\overrightarrow{BA}+\overrightarrow{AD}+\overrightarrow{DD'}=-\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AA'}\)

\(=-\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\)

NV
17 tháng 4 2022

\(\overrightarrow{A'C}=\overrightarrow{A'A}+\overrightarrow{AC}=-\overrightarrow{AA'}+\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}\)

Chọn B

NV
17 tháng 4 2022

\(\overrightarrow{AC'}+\overrightarrow{CA'}+\overrightarrow{BD'}+\overrightarrow{DB'}\)

\(=2\left(\overrightarrow{OC'}+\overrightarrow{OA'}\right)+2\left(\overrightarrow{OD'}+\overrightarrow{OB'}\right)\)

\(=2.\left(-2\overrightarrow{OI}\right)+2.\left(-2\overrightarrow{OI}\right)\)

\(=-4.2\overrightarrow{OI}\)

\(\Rightarrow2\overrightarrow{OI}=-\dfrac{1}{4}\left(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{x}+\overrightarrow{y}\right)\)

31 tháng 3 2017

Giải bài 2 trang 91 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 91 sgk Hình học 11 | Để học tốt Toán 11

Bài 1: Cho hình hộp ABCD.A'B'C'D'A có tất cả các cạnh đều bằng a. 1) CMR: DCB'A' và BCD'A' là những hình vuông. 2) CMR: AC' vuông góc với DA'; AC' vuông góc với BA' 3) Tính độ dài đoạn AC' Bài 2: Cho hình hộp ABCD. A'B'C'D'. Đặt \(\overrightarrow{AA'}=\overrightarrow{a}\), \(\overrightarrow{AB}=\overrightarrow{b}\) , \(\overrightarrow{AD}=\overrightarrow{c}\) . Gọi I, J lần lượt thuộc các đoạn thẳng AC' và B'C sao cho...
Đọc tiếp

Bài 1: Cho hình hộp ABCD.A'B'C'D'A có tất cả các cạnh đều bằng a.

1) CMR: DCB'A' và BCD'A' là những hình vuông.

2) CMR: AC' vuông góc với DA'; AC' vuông góc với BA'

3) Tính độ dài đoạn AC'

Bài 2: Cho hình hộp ABCD. A'B'C'D'. Đặt \(\overrightarrow{AA'}=\overrightarrow{a}\), \(\overrightarrow{AB}=\overrightarrow{b}\) , \(\overrightarrow{AD}=\overrightarrow{c}\) . Gọi I, J lần lượt thuộc các đoạn thẳng AC' và B'C sao cho \(\overrightarrow{MA}=k\overrightarrow{MC'}\) , \(\overrightarrow{NB'}=k\overrightarrow{NC}\) . Biểu diễn các vectơ sau theo ba vectơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) (nhớ vẽ hình)

Bài 3: Cho tứ diện ABCD có tất cả các cạnh bằng a. Các điểm M, N lần lượt là trung điểm AB, CD. O là tâm đường tròn ngoại tiếp tam giác BCD.

1) CMR: AO vuông góc với CD; MN vuông góc với CD.

2) Tính góc giữa: AC và BN; MN và BC. (nhớ vẽ hình.)

0
NV
17 tháng 4 2022

\(\overrightarrow{AB}+\overrightarrow{B_1C_1}+\overrightarrow{DD_1}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CC_1}=\overrightarrow{AC_1}\)

\(\Rightarrow k=1\)