Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
góc ABH=góc BDC
=>ΔAHB đồng dạng với ΔBCD
b: BD=căn 9^2+12^2=15cm
AH=9*12/15=108/15=7,2cm
c: Xét ΔHAD có HN/HA=HP/HD
nên NP//AD và NP=AD/2
=>NP//BC và NP=BC/2
=>NP//BM và NP=BM
=>BNPM là hình bình hành
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc ADB chung
=>ΔHAD đồng dạng với ΔABD
b: ΔHAD đồng dạng vơi ΔABD
=>DH/DA=DA/DB
=>DA^2=DH*DB
a: Xét tứ giác MDHE có
\(\widehat{MDH}=\widehat{MEH}=\widehat{EMD}=90^0\)
Do đó: MDHE là hình chữ nhật
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
góc BAH chung
Do đó: ΔABH đồng dạng với ΔACB
b: ΔABC vuông tại B
=>AC^2=AB^2+BC^2=100
=>AC=10cm
ΔBAC vuông tại B có BH là đường cao
nên AH*AC=AB^2 và BH*AC=BA*BC
=>AH*10=36 và BH*10=6*8=48
=>HA=3,6cm; BH=4,8cm
c: Xét ΔHBC có HE/HB=HK/HC
nên EK//BC
=>góc HEK=góc HBC=góc HAB
Xét ΔHEK vuông tại H và ΔHAB vuông tại H có
góc HEK=góc HAB
Do đó: ΔHEk đồng dạng với ΔHAB
=>HE/HA=EK/AB
=>HE*AB=EK*HA
a) Xét ΔAHB vuông tại H và ΔDAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB∼ΔDAB(g-g)
Lời giải:
a) Xét tam giác $ADH$ và $BDA$ có:
$\widehat{AHD}=\widehat{BAD}=90^0$
$\widehat{D}$ chung
$\Rightarrow \triangle ADH\sim \triangle BDA$ (g.g)
$\Rightarrow \frac{AD}{BD}=\frac{DH}{DA}\Rightarrow DA^2=BD.DH$ (đpcm)
b) Xét tam giác $AHD$ và $ABC$ có:
$\widehat{AHD}=\widehat{ABC}=90^0$
$\widehat{ADH}=\widehat{ADB}=\widehat{ACB}$ (tính chất hcn)
$\Rightarrow \triangle AHD\sim \triangle ABC$ (g.g)
c)
Xét tam giác $MAD$ và $NAC$ có:
$\widehat{ADM}=\widehat{ADB}=\widehat{ACB}=\widehat{ACN}$
$\frac{AD}{AC}=\frac{HD}{BC}=\frac{HD:2}{BC:2}=\frac{MD}{NC}$ (do tam giác đồng dạng phần b)
$\Rightarrow \triangle MAD\sim \triangle NAC$ (c.g.c)
$\Rightarrow \widehat{MAD}=\widehat{NAC}$
d)
Tam giác đồng dạng phần b cho ta $\widehat{DAH}=\widehat{CAB}$
Tam giác đồng dạng phần c cho ta $\widehat{DAM}=\widehat{CAN}$
$\Rightarrow \widehat{DAH}-\widehat{DAM}=\widehat{CAB}-\widehat{CAN}$
hay $\widehat{MAH}=\widehat{NAB}$
$\Rightarrow \widehat{MAN}=\widehat{HAB}$
Xét tam giác $AHB$ và $AMN$ có:
$\widehat{HAB}=\widehat{MAN}$
$\frac{AM}{AN}=\frac{AD}{AC}=\frac{AD}{BD}=\frac{AH}{AB}$ (từ tam giác đồng dạng phần c và a)
$\Rightarrow \triangle AHB\sim \triangle AMN$ (c.g.c)
$\Rightarrow \widehat{AMN}=\widehat{AHB}=90^0$
Hình vẽ: