Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Tứ giác ABCD là hình bình hành.
\(\Rightarrow AB=CD\)(tính chất hình bình hành)
và \(AB//CD\Rightarrow\widehat{ABD}=\widehat{BDC}\)(so le trong)
Xét \(\Delta AMB\)và \(\Delta CND\)có:
\(AB=CD\)(cmt)
\(\widehat{ABM}=\widehat{CDN}\)(cmt)
\(BM=DN\)(GT)
\(\Rightarrow\Delta AMB=\Delta CND\left(c.g.c\right)\)
b. Có AC cắt BD tại O
=> O là trung điểm của AC => OA = OC.
=> O là trung điểm của BD => OB = OD.
Có OB = OM + MD
OD = ON + ND
mà OB = OD, MB = ND
=> OM = ON => O là trung điểm của MN.
Trong tứ giác AMCN có:
OA = OC, OM = ON
=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
a: Sửa đề; AMCN
Xét tứ giác AMCN có
AM//CN
AM=CN
=>AMCN là hình bình hành
b:
Sửa đề: O là trung điểm của AC
AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MN
c: Xét ΔOAI và ΔOCK có
góc OAI=góc OCK
OA=OC
góc AOI=góc COK
=>ΔOAI=ΔOCK
=>OI=OK
Xét tứ giác IMKN có
O là trung điểm chung của IK và MN
=>IMKN là hình bình hành
=>IM//NK
a. Tứ giác ABCD là hình bình hành.
(tính chất hình bình hành)
và (so le trong)
Xét và có:
(cmt)
(cmt)
(GT)
b. Có AC cắt BD tại O
=> O là trung điểm của AC => OA = OC.
=> O là trung điểm của BD => OB = OD.
Có OB = OM + MD
OD = ON + ND
mà OB = OD, MB = ND
=> OM = ON => O là trung điểm của MN.
Trong tứ giác AMCN có:
OA = OC, OM = ON
=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
a/ Xét △AMD vuông tại M và △CNB vuông tại N có:
- \(AD=BC\) (ABCD là hình bình hành)
- \(\hat{ADM}=\hat{CBN}\) (AD // BC)
⇒ △AMD = △CNB (c.h-g.n) ⇒ AM=NC (1)
\(\begin{matrix}AM\perp MN\\AN\perp NC\end{matrix}\left(gt\right)\Rightarrow AM\text{ // }NC\left(2\right)\)
Từ (1) và (2). Vậy: AMCN là hình bình hành (đpcm)
============
b/ AC và MN là hai đường chéo của hình bình hành AMNC
- Mà I là trung điểm MN
Vậy: I là trung điểm của AC (Trong hình bình hành, hai đường chéo cắt nhau tại trung điểm của mỗi đường) (đpcm)
Xét ΔADM vuông tại M và ΔCBN vuông tại N có
AD=BC
\(\widehat{ADM}=\widehat{CBN}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra: Hai đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MN
nên I là trung điểm của AC
Câu a thôi nhé:
do ABCDlà hbh
=> AD=BC
AB//CD=>NB//CD
AD//BC => AD//CK
vì NB//CD
=>DMMK=ADCKDMMK=ADCK (theo hệ quả ta-lét)
mà AD=BC
=> DMMK=BCCKDMMK=BCCK (*)
vì AD//CK
=> DNDK=BCCKDNDK=BCCK (theo đl ta-lét) (**)
Từ (*) và (**) ta có
DNDK=DMMKDNDK=DMMK =>MKDK=DMDNMKDK=DMDN
ta có
DMDN+DMDK=MKDK+DMDK=DKDK=1DMDN+DMDK=MKDK+DMDK=DKDK=1 (đpc
Câu b ko biết làm
P.s:Hok tốt
a: Xét ΔAMB và ΔCND có
AB=CD
\(\widehat{ABM}=\widehat{CDN}\)
BM=DN
Do đó: ΔAMB=ΔCND
a: Xét ΔAMD vuông tại M và ΔCNB vuông tại N có
AD=CB
\(\widehat{ADM}=\widehat{CBN}\)
Do đó: ΔAMD=ΔCNB
Suy ra: AM=CN