K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 12 2022

Gọi O là tâm đáy \(\Rightarrow\) O là trung điểm BD và AC

Trong mp ((SAC), nối SO cắt AM tại I

\(\Rightarrow I=AM\cap\left(SBD\right)\)

Ta có M là trung điểm SC, O là trung điểm AC

\(\Rightarrow\) I là trọng tâm tam giác SAC

\(\Rightarrow\dfrac{IA}{AM}=\dfrac{2}{3}\Rightarrow\dfrac{MA}{IA}=\dfrac{3}{2}\)

Chọn D

Chọn B

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\), \(I\) là giao điểm của \(AM\) và \(SO\). Ta có:

\(\left. \begin{array}{l}I \in SO \subset \left( {SB{\rm{D}}} \right)\\I \in AM\end{array} \right\} \Rightarrow I = AM \cap \left( {SB{\rm{D}}} \right)\)

Xét tam giác \(SAC\) có:

\(ABCD\) là hình bình hành \( \Rightarrow O\) là trung điểm của \(AC\)

Theo đề bài ta có \(M\) là trung điểm của \(SC\)

Mà \(I = SO \cap AM\)

\( \Rightarrow I\) là trọng tâm của .

b) Gọi \(E\) là giao điểm của \(S{\rm{D}}\) và \(BI\). Ta có:

\(\left. \begin{array}{l}E \in BI \subset \left( {ABM} \right)\\E \in S{\rm{D}}\end{array} \right\} \Rightarrow E = S{\rm{D}} \cap \left( {ABM} \right)\)

c) Gọi \(J\) là giao điểm của \(MN\) và \(BE\). Ta có:

\(\left. \begin{array}{l}J \in BE \subset \left( {SB{\rm{D}}} \right)\\J \in MN\end{array} \right\} \Rightarrow J = MN \cap \left( {SB{\rm{D}}} \right)\)

NV
23 tháng 1 2024

À, tưởng dài mà thực ra cũng dễ thôi, vì toàn điểm đặc biệt cả.

Gọi O là tâm đáy \(\Rightarrow I\) là giao AN và SO

\(\Rightarrow I\) là trọng tâm SAC \(\Rightarrow\dfrac{SI}{SO}=\dfrac{2}{3}\)

Gọi E là giao điểm CM và BD, trong mp (SCM) nối MN cắt SE tại J

E là trọng tâm ABC \(\Rightarrow\dfrac{BE}{BO}=\dfrac{2}{3}\)

Menelaus tam giác BOI:

\(\dfrac{BE}{EO}.\dfrac{OS}{SI}.\dfrac{IJ}{JB}=1\Rightarrow2.\dfrac{3}{2}.\dfrac{IJ}{JB}=1\Rightarrow JB=3IJ\)

\(\Rightarrow IB-IJ=3IJ\Rightarrow\dfrac{IB}{IJ}=4\)

NV
23 tháng 1 2024

loading...

31 tháng 3 2017

Giải bài 4 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 4 trang 121 sgk Hình học 11 | Để học tốt Toán 11

NV
12 tháng 12 2020

a.

 \(MN\) là đường trung bình của tam giác ABD \(\Rightarrow MN//BD\Rightarrow MN//\left(SBD\right)\)

b.

\(\dfrac{SI}{SM}=\dfrac{SJ}{SN}\Rightarrow IJ//MN\) (Talet đảo) 

Mà \(MN//\left(SBD\right)\Rightarrow IJ//\left(SBD\right)\)

c.

Gọi P là trung điểm IJ, Q là trung điểm MN \(\Rightarrow\) Q đồng thời là trung điểm AO

 \(\Rightarrow\dfrac{SP}{SQ}=\dfrac{SI}{SM}=\dfrac{2}{3}\Rightarrow P\) là trọng tâm SAO

Gọi K là trung điểm SA \(\Rightarrow OP\) đi qua K 

\(\Rightarrow K\in\left(IJO\right)\)

Mà K là trung điểm SA, O là trung điểm AC \(\Rightarrow KO\) là đường trung bình SAC

\(\Rightarrow SC//KO\Rightarrow SC//\left(IJO\right)\)

12 tháng 12 2020

thanks a

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

10 tháng 12 2019

Trong mặt phẳng (SAC) : AF ∩S O = I là trọng tâm tam giác SBD ⇒ IA/IF=2

Đáp án B

24 tháng 11 2023

1: Gọi giao điểm của AC và BD là O trong mp(ABCD)

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên (SAC) giao (SBD)=SO

Xét ΔSDC có

P,N lần lượt là trung điểm của DS,DC

=>PN là đường trung bình của ΔSDC

=>PN//SC

PN//SC

SC\(\subset\)(SBC)

PN không nằm trong mp(SBC)

Do đó: PN//(SBC)