K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1 2024

À, tưởng dài mà thực ra cũng dễ thôi, vì toàn điểm đặc biệt cả.

Gọi O là tâm đáy \(\Rightarrow I\) là giao AN và SO

\(\Rightarrow I\) là trọng tâm SAC \(\Rightarrow\dfrac{SI}{SO}=\dfrac{2}{3}\)

Gọi E là giao điểm CM và BD, trong mp (SCM) nối MN cắt SE tại J

E là trọng tâm ABC \(\Rightarrow\dfrac{BE}{BO}=\dfrac{2}{3}\)

Menelaus tam giác BOI:

\(\dfrac{BE}{EO}.\dfrac{OS}{SI}.\dfrac{IJ}{JB}=1\Rightarrow2.\dfrac{3}{2}.\dfrac{IJ}{JB}=1\Rightarrow JB=3IJ\)

\(\Rightarrow IB-IJ=3IJ\Rightarrow\dfrac{IB}{IJ}=4\)

NV
23 tháng 1 2024

loading...

17 tháng 6 2018

Chứng minh B, J, I thẳng hàng. Áp dụng định lí Mê-nê-la-uýt vào tam giác IAB ta được IJ/JB = 1/4.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án C

a: \(N\in SC\subset\left(SCD\right)\)

\(N\in\left(ABN\right)\)

Do đó: \(N\in\left(SCD\right)\cap\left(ABN\right)\)

Xét (SCD) và (ABN) có

\(N\in\left(SCD\right)\cap\left(ABN\right)\)

CD//AB

Do đó: (SCD) giao (ABN)=xy, xy đi qua N và xy//AB//CD

c: Chọn mp(SAC) có chứa AN

Gọi O là giao điểm của AC và BD trong mp(ABCD)

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AN với SO

=>K là giao điểm của AN với mp(SBD)

NV
18 tháng 1 2024

Chà, bài này dựng xong hình là xong thôi (tính toán đơn giản bằng Talet)

Đầu tiên là dựng mp qua M và song song (SBD): qua M kẻ các đường thẳng song song SB, SD lần lượt cắt AB, AD tại E và F

Nối EF kéo dài cắt BC tại I và CD tại G

Qua G kẻ đường thẳng song song MF (hoặc SD) cắt MI kéo dài tại J

Talet cho ta: \(\dfrac{MI}{MJ}=\dfrac{IF}{GF}\)

Mà \(\dfrac{GF}{GI}=\dfrac{DF}{BI}=\dfrac{\dfrac{1}{2}AD}{BC+\dfrac{1}{2}BC}=...\)

Vậy là xong

NV
18 tháng 1 2024

loading...

30 tháng 10 2023

a: Xét ΔSBD có

M,N lần lượt là trung điểm của SB,SD

=>MN là đường trung bình

=>MN//BD

BD//MN

\(MN\subset\left(AMN\right)\)

BD không thuộc mp(AMN)

Do đó: BD//(AMN)

b: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Chọn mp(SBD) có chứa MN

(SBD) giao (SAC)=SO(cmt)

Gọi K là giao điểm của SO với MN

=>K là giao điểm của MN với mp(SAC)

10 tháng 12 2019

Trong mặt phẳng (SAC) : AF ∩S O = I là trọng tâm tam giác SBD ⇒ IA/IF=2

Đáp án B

5 tháng 12 2019

Trong mặt phẳng (ABCD) : BD ∩ EC = K

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Trong mặt phẳng (SEC) : EF ∩ SK = J. Áp dụng định lí Me-nê-la-uýt vào tam giác EFC ta được: EJ/JF = 1

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án B

18 tháng 10 2021

câu b MN và mp gì vậy ạ?

18 tháng 10 2021

Mình gửi tạm câu a trước, đợi bạn bổ sung câu b nha

undefined

17 tháng 11 2023

a: Gọi O là giao điểm của AC và BD

Chọn mp(SAC) có chứa AN

\(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi I là giao điểm của SO với AN

=>I là giao điểm của AN với mp(SBD)

Chọn mp(AMN) có chứa MN

\(B\in AM\subset\left(AMN\right)\)

\(B\in BD\subset\left(SBD\right)\)

Do đó: \(B\in\left(AMN\right)\cap\left(SBD\right)\)

mà \(I\in\left(AMN\right)\cap\left(SBD\right)\)

nên (AMN) giao (SBD)=BI

Gọi K là giao điểm của BI với MN

=>K là giao điểm của MN với mp(SBD)

b: K là giao điểm của BI với MN

=>B,I,K thẳng hàng

d: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC và O là trung điểm của BD

Xét ΔSAC có

O,N lần lượt là trung điểm của CA,CS

=>ON là đường trung bình

=>ON//SA và ON=SA/2

Xét ΔINO và ΔIAS có

\(\widehat{INO}=\widehat{IAS}\)

\(\widehat{NIO}=\widehat{AIS}\)

Do đó: ΔINO đồng dạng với ΔIAS

=>\(\dfrac{IN}{IA}=\dfrac{NO}{AS}=\dfrac{1}{2}\)

Gọi giao của AC và BD là O

\(\left\{{}\begin{matrix}O\in AC\subset\left(SAC\right)\\O\in BD\subset\left(SBD\right)\end{matrix}\right.\Leftrightarrow O\in\left(SAC\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}S\in\left(SAC\right)\\S\in\left(SBD\right)\end{matrix}\right.\Leftrightarrow S\in\left(SAC\right)\cap\left(SBD\right)\)

=>(SAC) giao (SBD)=SO