K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2019

Đáp án A

Gọi O là tâm hình vuông ABCD, M là trung điểm CD.

Khi đó SO là đường cao hình chóp, góc SMO là góc giữa mặt bên và mặt đáy của hình chóp.

11 tháng 8 2018

Đáp án C

Gọi O  tâm đáy ABCD. Khi đó S O ⊥ A B C D

suy ra AO  hình chiếu vuông góc của SA lên mặt phẳng đáy. Khi đó góc giữa cạnh bên SA  đáy là  S A O ^

Suy ra  S A O ^ = 60 °

Vậy thể tích khối chóp là:

V = 1 3 . S O . S A B C D = a 3 6 6

9 tháng 2 2018

8 tháng 6 2017

22 tháng 5 2017

18 tháng 4 2016

S D A H B M C I N

Gọi H là tâm của ABCD\(\Rightarrow SH\perp\left(ABCD\right)\)

      M là trung điểm của BC \(\Rightarrow BC\perp\left(SHM\right)\)

Do các mặt bên tạo với đáy cùng 1 góc => \(\widehat{SHM}\) bằng góc tạo bởi 2 mặt bên với đáy

Tính được \(SH=\frac{a\sqrt{3}}{2}'HM=\frac{a}{2}\)

\(\tan\widehat{SMH}=\frac{SH}{MH}=\sqrt{3}\Rightarrow\widehat{SMN}=60^0\)

Lập luận được tâm khối cầu là điểm I của SH với trung trực SC trong (SHC)

Tính được bán kính khối cầu do tam giác SNI đồng dạng với tam giác SHC

\(\Rightarrow SI=\frac{SN.SC}{SH}=\frac{5a}{4\sqrt{3}}\)

Vậy \(V=\frac{4}{3}\pi R^2=\frac{125a^3\sqrt{3}\pi}{432}\)

14 tháng 12 2017

Chọn C.

Gọi SO là đường cao của hình chóp tứ giác đều S.ABCD. Do đó góc giữa cạnh bên và mặt đáy là góc  S B O ^

Ta có: 

S O = h = a 2 ;   O B = B D 2 = a 2

Tam giác vuông SBO tại O có SO=OB= a 2  nên cân tại O.

Suy ra   S B O ^ = 45 o

1 tháng 8 2018

Chọn A

Phương pháp:

Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.

Cách giải

26 tháng 3 2018

Đáp án A