K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2019

Đáp án A

Gọi O là tâm hình vuông ABCD, M là trung điểm CD.

Khi đó SO là đường cao hình chóp, góc SMO là góc giữa mặt bên và mặt đáy của hình chóp.

22 tháng 5 2017

26 tháng 3 2018

Đáp án A

11 tháng 8 2018

Đáp án C

Gọi O  tâm đáy ABCD. Khi đó S O ⊥ A B C D

suy ra AO  hình chiếu vuông góc của SA lên mặt phẳng đáy. Khi đó góc giữa cạnh bên SA  đáy là  S A O ^

Suy ra  S A O ^ = 60 °

Vậy thể tích khối chóp là:

V = 1 3 . S O . S A B C D = a 3 6 6

9 tháng 9 2017

Gọi O là tâm của hình vuông ABCD. Do S.ABCD là hình chóp đều nên SO ⊥(ACBD)

Suy ra, OB là hình chiếu vuông góc của SB lên mp(ABCD)

9 tháng 9 2019

Đáp án D

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Lời giải:
Vì $(SAB), (SAD)$ cùng vuông góc với $(ABCD)$ mà $(SAB)\cap (SAD)\equiv SA$ nên $SA\perp  (ABCD)$

Vì $SA\perp (ABCD)$ nên $SA\perp CB$

Mà: $AB\perp CB$

$\Rightarrow CB\perp (SAB)$

$\Rightarrow \angle (SC,(ABCD))=\angle (SC, SB)=\angle CSB=45^0$

$\Rightarrow SB=CB=a$

$SA=\sqrt{SB^2-AB^2}=\sqrt{a^2-a^2}=0$ (vô lý)

 

3 tháng 3 2019

Đáp án A

Gọi O là tâm của hình vuông ABCD.

Do S.ABCD là hình chóp đều nên SO  (ACBD)

Suy ra, OB là hình chiếu vuông góc của SB lên mp(ABCD)

6 tháng 9 2018

Chọn A.

Gọi H là tâm của hình vuông ABCD thì  SH ⊥ (ABCD)

Do đó