K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2021

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

Gọi M là trung điểm AB \(\Rightarrow AB\perp OM\Rightarrow AB\perp\left(SOM\right)\)

\(\Rightarrow\widehat{SMO}\) là góc giữa mặt bên  và đáy hay \(\widehat{SMO}=60^0\)

\(SO=OM.tan\widehat{SMO}=\dfrac{a}{2}.tan60^0=\dfrac{a\sqrt{3}}{2}\)

\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.a^2=\dfrac{a^3\sqrt{3}}{6}\)

26 tháng 3 2018

Đáp án A

8 tháng 6 2017

22 tháng 5 2017

11 tháng 8 2018

Đáp án C

Gọi O  tâm đáy ABCD. Khi đó S O ⊥ A B C D

suy ra AO  hình chiếu vuông góc của SA lên mặt phẳng đáy. Khi đó góc giữa cạnh bên SA  đáy là  S A O ^

Suy ra  S A O ^ = 60 °

Vậy thể tích khối chóp là:

V = 1 3 . S O . S A B C D = a 3 6 6

27 tháng 8 2021

Tk ko in đậm

27 tháng 8 2021

mình không hiểu được ý của bạn khi bạn truyền đạt với mình 

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Lời giải:
Vì $(SAB), (SAD)$ cùng vuông góc với $(ABCD)$ mà $(SAB)\cap (SAD)\equiv SA$ nên $SA\perp  (ABCD)$

Vì $SA\perp (ABCD)$ nên $SA\perp CB$

Mà: $AB\perp CB$

$\Rightarrow CB\perp (SAB)$

$\Rightarrow \angle (SC,(ABCD))=\angle (SC, SB)=\angle CSB=45^0$

$\Rightarrow SB=CB=a$

$SA=\sqrt{SB^2-AB^2}=\sqrt{a^2-a^2}=0$ (vô lý)

 

18 tháng 9 2019

Đáp án A

Gọi O là tâm hình vuông ABCD, M là trung điểm CD.

Khi đó SO là đường cao hình chóp, góc SMO là góc giữa mặt bên và mặt đáy của hình chóp.

27 tháng 6 2018

Đáp án D