Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC vuông góc SA
BC vuông góc AB
=>BC vuông góc (SAB)
=>(SAB) vuông góc (SBC)
b: BA vuông AD
BA vuông góc SA
=>BA vuông góc (SAD)
=>BA vuông góc SD
Lấy H là trung điểm của SD
=>HM//DC
=>HM vuông góc BC
ΔSAD vuông tại A nên AH vuông góc SD
=>SD vuông góc (BAH)
=>SD vuông góc (ABM)
=>(SCD) vuông góc (ABM)
a. Ta có : \(BC\perp SA;BC\perp AB\Rightarrow BC\perp\left(SAB\right)\Rightarrow\left(SAB\right)\perp\left(SBC\right)\)
b.Dễ dàng c/m : \(AB\perp\left(SAD\right)\) \(\Rightarrow AB\perp SD\)
Lấy H là TĐ SD \(\Rightarrow MH\) // DC // AB
\(\Delta SAD\) vuông cân tại A ; H là TĐ SD \(\Rightarrow AH\perp SD\)
Suy ra : \(SD\perp\left(ABH\right)\Rightarrow SD\perp\left(ABM\right)\Rightarrow\left(SCD\right)\perp\left(ABM\right)\left(đpcm\right)\)
1: BC vuông góc AB
BC vuông góc SA
=>BC vuông góc (SAB)
=>(SAB) vuông góc (SBC)
a: \(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)
(SC;(ABCD))=(CS;CA)=góc SCA
tan SCA=SA/AC=1/căn 2
=>góc SCA=35 độ
b:
Kẻ BH vuông góc AC tại H
(SB;SAC)=(SB;SH)=góc BSH
\(HB=\dfrac{a\cdot a}{a\sqrt{2}}=a\cdot\dfrac{\sqrt{2}}{2}\)
AH=AC/2=a*căn 2/2
=>\(SH=\sqrt{a^2+\dfrac{1}{2}a^2}=a\sqrt{\dfrac{3}{2}}\)
\(SH=\dfrac{a\sqrt{6}}{2};HB=\dfrac{a\sqrt{2}}{2};SB=a\sqrt{2}\)
\(cosBSH=\dfrac{SB^2+SH^2-BH^2}{2\cdot SB\cdot SH}=\dfrac{\sqrt{3}}{2}\)
=>góc BSH=30 độ
c: (SD;(SAB))=(SD;SA)=góc ASD
tan ASD=AD/AS=2
nên góc ASD=63 độ
Bạn kiểm tra lại đề,
1. ABCD là hình thang vuông tại A và B hay A và D? Theo dữ liệu này thì ko thể vuông tại B được (cạnh huyền DC nhỏ hơn cạnh góc vuông AB là cực kì vô lý)
2. SC và AC cắt nhau tại C nên giữa chúng không có khoảng cách. (khoảng cách bằng 0)
Nguyễn Việt Lâm
e xin loi a
ABCD là hình thang vuông tại A và D
còn đoạn sau khoảng cách giữa 2 đt SC và AC thì e kh biet no sai o đau
anh giup em vs ah
\(\left\{{}\begin{matrix}\left(SAB\right)\perp\left(ABCD\right)\\\left(SAB\right)\cap\left(ABCD\right)=AB\\SA\perp AB\end{matrix}\right.\) \(\Rightarrow SA\perp\left(ABCD\right)\)
\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABCD)
\(\widehat{SBA}=45^0\) (do SAB vuông cân tại A)
b.
\(\widehat{SCA}\) là góc giữa SC và (ABCD)
\(AC=AB\sqrt{2}=2a\sqrt{2}\)
\(tan\widehat{SCA}=\dfrac{SA}{SC}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{SCA}\approx35^015'\)